Effect of Iron Loading on the Catalytic Activity of Fe/N-Doped Reduced Graphene Oxide Catalysts via Irradiation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. X-ray Diffraction Analysis
3.2. Raman Spectroscopy Analysis
3.3. Fourier Transform Infrared Spectroscopy Analysis
3.4. Field Emission Scanning Electron Microscopy Analysis
3.5. Electrocatalytic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, T.H.; Yin, Z.S.; Guo, J.W.; Wang, C. Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for the oxygen reduction reaction. J. Power Sources 2014, 272, 661–671. [Google Scholar] [CrossRef]
- Wen, Z.; Ci, S.; Zhang, F.; Feng, X.; Cui, S.; Mao, S.; Luo, S.; He, Z.; Chen, J. Nitrogen-enriched core-shell structured Fe/Fe 3C-C nanorods as advanced electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2012, 24, 1399–1404. [Google Scholar] [CrossRef]
- Villers, D.; Jacques-Bédard, X.; Dodelet, J.-P. Fe-based catalysts for Oxygen reduction in PEM fuel cells. J. Electrochem. Soc. 2004, 151, A1507–A1515. [Google Scholar] [CrossRef]
- Park, M.; Lee, J.; Hembram, K.; Lee, K.-R.; Han, S.; Yoon, C.; Nam, S.-W.; Kim, J. Oxygen Reduction Electrocatalysts Based on Coupled Iron Nitride Nanoparticles with Nitrogen-Doped Carbon. Catalysts 2016, 6, 86. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Jiang, L.; Li, X.; Jin, J.; Wang, J.; Sun, G. A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Cuihua Xuebao Chin. J. Catal. 2016, 37, 539–548. [Google Scholar] [CrossRef]
- Dombrovskis, J.K.; Palmqvist, A.E.C. Recent Progress in Synthesis, Characterization, and Evaluation of Non-Precious Metal Catalysts for the Oxygen Reduction Reaction. Fuel Cells 2016, 16, 4–22. [Google Scholar] [CrossRef]
- Sudarsono, W.; Wong, W.Y.; Loh, K.S.; Majlan, E.H.; Syarif, N.; Kok, K.Y.; Yunus, R.M.; Lim, K.L. Noble-free oxygen reduction reaction catalyst supported on Sengon wood (Paraserianthes falcataria L.) derived reduced graphene oxide for fuel cell application. Int. J. Energy Res. 2020, 44, 1761–1774. [Google Scholar] [CrossRef]
- Fu, X.; Hassan, F.M.; Zamani, P.; Jiang, G.; Higgins, D.C.; Choi, J.Y.; Wang, X.; Xu, P.; Liu, Y.; Chen, Z. Engineered architecture of nitrogenous graphene encapsulating porous carbon with nano-channel reactors enhancing the PEM fuel cell performance. Nano Energy. 2017, 42, 249–256. [Google Scholar] [CrossRef]
- Soo, L.T.; Loh, K.S.; Mohamad, A.B.; Daud, W.R.W.; Wong, W.Y. An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells. Appl. Catal. A Gen. 2015, 497, 198–210. [Google Scholar] [CrossRef]
- Molina-García, M.A.; Rees, N.V. Effect of catalyst carbon supports on the oxygen reduction reaction in alkaline media: A comparative study. RSC Adv. 2016, 6, 94669–94681. [Google Scholar] [CrossRef] [Green Version]
- Shaari, N.; Kamarudin, S.K. Graphene in electrocatalyst and proton-conducting membrane in fuel cell applications: An overview. Renew. Sustain. Energy Rev. 2017, 69, 862–870. [Google Scholar] [CrossRef]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*. Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.A.; Fateev, V.N.; Pushkarev, A.S.; Pushkareva, I.V.; Ivanova, N.A.; Kalinichenko, V.N.; Presnyakov, M.Y.; Wei, X. Reduced graphene oxide and its modifications as catalyst supports and catalyst layer modifiers for PEMFC. Materials 2018, 11, 1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinayan, B.P.; Nagar, R.; Ramaprabhu, S. Synthesis, and investigation of the mechanism of platinum-graphene electrocatalysts by novel co-reduction techniques for proton exchange membrane fuel cell applications. J. Mater. Chem. 2012, 22, 25325–25334. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, A.; Sood, S.C.; Anand, V.K. Synthesis of Graphene Oxide using Modified Hummer’s Method and its Reduction using Hydrazine Hydrate. Int. J. Eng. Trends Technol. 2016, 40, 67–71. [Google Scholar] [CrossRef]
- Ban, F.Y.; Majid, S.R.; Huang, N.M.; Lim, H.N. Graphene oxide and its electrochemical performance. Int. J. Electrochem. Sci. 2012, 7, 4345–4351. [Google Scholar]
- Park, H.Y.; Yang, D.S.; Bhattacharjya, D.; Song, M.Y.; Yu, J.S. A highly efficient carbon-supported Pt electrocatalyst prepared by γ-irradiation for cathodic oxygen reduction. Int. J. Hydrogen Energy 2014, 39, 1688–1697. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, H.L.; Cao, K.; Wang, L.; Zeng, X.; Zhang, X.; He, L.; Liu, P.; Wang, Z.; Zhai, M. Gamma irradiation-induced preparation of Graphene-Ni nanocomposites with efficient electromagnetic wave absorption. Materials 2018, 11, 2145. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, J.; Li, L.; Li, J. Gamma-ray irradiation-induced reduction and self-assembly of graphene oxide into three-dimensional graphene aerogel. Mater. Lett. 2016, 177, 76–79. [Google Scholar] [CrossRef]
- Abidin, Z.; Muhamad, E.; Ahmad Daud, N.; Ibrahim, N.; Chieng, B.; Talib, Z. Functionalizing Graphene Oxide with Alkylamine by Gamma-ray Irradiation Method. Nanomaterials 2017, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhao, X.; Shi, H.; Liu, L.; Deng, H.; Xu, Z.; Tian, F.; Miao, X. Shape inducer-free polygonal angle platinum nanoparticles in graphene oxide as oxygen reduction catalyst derived from gamma irradiation. J. Colloid Interface Sci. 2020, 575, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Minitha, C.R.; Rajendrakumar, R.T. Synthesis, and Characterization of Reduced Graphene Oxide. Adv. Mater. Res. 2013, 678, 56–60. [Google Scholar] [CrossRef]
- Soo, L.T.; Loh, K.S.; Mohammad, A.B.; Doud, W.R.W.; Wong, W.Y. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction. J. Alloys Compd. 2016, 677, 112–120. [Google Scholar] [CrossRef]
- Xi, J.; Wang, F.; Mei, R.; Gong, Z.; Fan, X.; Yang, H.; An, L.; Wu, Q.; Luo, Z. Catalytic performance of a pyrolyzed graphene supported Fe–N–C composite and its application for acid direct methanol fuel cells. RSC Adv. 2016, 6, 90797–90805. [Google Scholar] [CrossRef]
- Osmieri, L.; Videla, A.M.; Specchia, S. The use of different types of reduced graphene oxide in the preparation of Fe-N-C electrocatalysts: Capacitive behavior and oxygen reduction reaction activity in alkaline medium. J. Solid State Electrochem. 2016, 20, 3507–3523. [Google Scholar] [CrossRef]
- Peng, H.; Mo, Z.; Liao, S.; Liang, H.; Yang, L.; Luo, F.; Song, H.; Zhong, Y.; Zhang, B. High-performance Fe- and N- Doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep. 2013, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Gao, L.; Teng, C.; Li, Y.; Yang, H.; Shui, J.; Lu, X.; Zhu, Y.; Dai, L. Ancient Chemistry "pharaoh’s Snakes" for Efficient Fe-/N-Doped Carbon Electrocatalysts. ACS Appl. Mater. Interfaces 2018, 10, 10778–10785. [Google Scholar] [CrossRef]
- Saleem, H.; Haneef, M.; Abbasi, H.Y. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 2018, 204, 1–7. [Google Scholar] [CrossRef]
- Kar, T.; Devivaraprasad, R.; Singh, R.K.; Bera, B.; Neat, M. Reduction of graphene oxide-a comprehensive electrochemical investigation in alkaline and acidic electrolytes. RSC Adv. 2014, 4, 57781–57790. [Google Scholar] [CrossRef]
- Ma, C.; Yang, K.; Wang., L.; Wang, X. Facile synthesis of reduced graphene oxide/ Fe3O4 nanocomposite film. J. Appl. Blomater. Funct. Mater. 2017, 15, S1–S6. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.Y.; Loh, K.S.; Daud, W.R.W.; Mohamad, A.B. Synthesis and Characterization of Sulfonated Graphene Oxide Nanofiller for Polymer Electrolyte Membrane. IOP Conf. Ser. Mater. Sci. Eng. 2016, 160. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.; Li, Y.; Bo, L.; Wang, W.; Li, T.; Zhang, Q. Core-shell Fe3O4@NCS-Mn derived from chitosan-Schiff based mn complex with enhanced catalytic activity for the oxygen reduction reaction. Catalysts 2019, 9, 692. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Ma, Y.; Liu, L.; Yao, S.; Wu, W.; Wang, Z.; Lv, P.; Zheng, J.; Yu, K.; Wei, W.; et al. Plasma enabled Fe2O3/Fe3o4 nano-aggregates anchored on nitrogen-doped graphene as anode for sodium-ion batteries. Nanomaterials 2020, 10, 782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aujara, K.M.; Chieng, B.W.; Ibrahim, N.A.; Zainuddin, N.; Ratnam, C.T. Gamma-irradiation induced functionalization of graphene oxide with organosilanes. Int. J. Mol. Sci. 2019, 20, 1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, F.; Lei, H.; Wang, S.; Wang, H.; Jin, Z. A novel Fe-N-C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes. Nanoscale 2017, 9, 17364–17370. [Google Scholar] [CrossRef] [Green Version]
- Ngidi, N.P.D.; Ollengo, M.A.; Nyamori, V.O. Effect of Doping Temperatures and Nitrogen Precursors on the Physicochemical, Optical, and Electrical Conductivity Properties of Nitrogen-Doped Reduced Graphene Oxide. Materials 2019, 12, 3376. [Google Scholar] [CrossRef] [Green Version]
- Boas, C.R.S.V.; Focassio, B.; Marinho, E.; Larrude, D.G.; Salvadori, M.C.; Leao, C.R.; Santos, D.J. Characterization of nitrogen-doped graphene bilayers synthesized by fast, low-temperature microwave plasma-enhanced chemical vapor deposition. Sci. Rep. 2019, 9, 1–12. [Google Scholar]
- Rochman, R.A.; Wahyuningsih, S.; Ramelan, A.H.; Hanif, Q.A. Preparation of nitrogen and sulfur Co-doped reduced graphene oxide (rGO-NS) using N and S heteroatom of thiourea. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509. [Google Scholar] [CrossRef]
- Sun, M.; Davenport, D.; Liu, H.; Qu, J.; Elimelech, M.; Li, J. Highly efficient and sustainable non-precious metal Fe-N-C electrocatalyst for oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 2527–2539. [Google Scholar] [CrossRef]
- Xiao, M.; Zhu, J.; Feng, L.; Liu, C.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhong, Y.; Liang, X.; Tan, W.; Zhu, J.; Wang, C.Y. Natural Magnetite: An efficient catalyst for the degradation of organic contaminant. Sci. Rep. 2015, 5, 10139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, E.; Shin, H.; Antink, W.H.; Sung, Y.E.; Hyeon, T. Recent Advances in Electrochemical Oxygen Reduction to H2O2: Catalyst and Cell Design. ACS Energy Lett. 2020, 6, 1881–1892. [Google Scholar] [CrossRef]
- Qaseem, A.; Chen, F.; Wu, X.; Johnston, R.L. Pt-free Silver Nonalloy Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Catal. Sci. Technol. 2016, 6, 3317–3340. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Ni, Y.; Kong, F.; Li, R.; Zhang, C.; Kong, A.; Shan, Y. Pyrolytic Carbon-coated Cu-Fe Alloy Nanoparticles with High Catalytic Performance for Oxygen Electroreduction. Chem. Asian J. 2019, 14, 2676–2684. [Google Scholar] [CrossRef]
- Chen, Z.; Higgins, D.; Yu, A.; Zhang, L.; Zhang, J. A review of non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192. [Google Scholar] [CrossRef]
- Basri, S.; Kamarudin, S.K. Nanocatalyst FeN4/C Molecular Orbital Behaviour for Oxygen Reduction Reaction (ORR) in Cathode Direct Methano Fuel Cell (DMFC). J. Kejuruter. SI. 2018, 1, 59–64. [Google Scholar] [CrossRef]
- Chong, S.T.; Lee, T.K.; Samad, S.; Loh, K.S.; Wong, W.Y.; Wan Daud, W.R.; Sunarso, J. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int. J. Hydrogen Energy 2018, 43, 7823–7854. [Google Scholar] [CrossRef]
- Guo, D.; Han, S.; Wang, J.; Zhu, Y. MIL-100-Fe derived N-doped Fe/Fe 3 C@C electrocatalysts for the efficient oxygen reduction reaction. Appl. Surf. Sci. 2018, 434, 1266–1273. [Google Scholar] [CrossRef]
Name of Samples | wt.% of C | wt.% of O | wt.% of Fe |
---|---|---|---|
10% Fe/N-rGO | 71.22 | 24.37 | 4.41 |
15% Fe/N-rGO | 86.85 | 11.50 | 2.10 |
20% Fe/N-rGO | 76.65 | 13.43 | 9.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, K.R.; Kok, K.Y.; Wong, W.Y.; Yang, H.; Lim, K.L. Effect of Iron Loading on the Catalytic Activity of Fe/N-Doped Reduced Graphene Oxide Catalysts via Irradiation. Appl. Sci. 2021, 11, 205. https://doi.org/10.3390/app11010205
Rahman KR, Kok KY, Wong WY, Yang H, Lim KL. Effect of Iron Loading on the Catalytic Activity of Fe/N-Doped Reduced Graphene Oxide Catalysts via Irradiation. Applied Sciences. 2021; 11(1):205. https://doi.org/10.3390/app11010205
Chicago/Turabian StyleRahman, Kazi Rumanna, Kuan Ying Kok, Wai Yin Wong, Hsiharng Yang, and Kean Long Lim. 2021. "Effect of Iron Loading on the Catalytic Activity of Fe/N-Doped Reduced Graphene Oxide Catalysts via Irradiation" Applied Sciences 11, no. 1: 205. https://doi.org/10.3390/app11010205
APA StyleRahman, K. R., Kok, K. Y., Wong, W. Y., Yang, H., & Lim, K. L. (2021). Effect of Iron Loading on the Catalytic Activity of Fe/N-Doped Reduced Graphene Oxide Catalysts via Irradiation. Applied Sciences, 11(1), 205. https://doi.org/10.3390/app11010205