Analytical Pyrolysis and Mass Spectrometry to Characterise Lignin in Archaeological Wood
Abstract
:1. Introduction
2. Case Studies and Archaeological Wood Samples
2.1. Biskupin Archaeological Site (Poland)
2.2. “La Marmotta” Archaeological Site (Italy)
2.3. The Oseberg Collection (Norway)
2.4. The Ancient Harbour of San Rossore (Pisa, Italy)
2.5. Żółte Archaeological Site (Poland)
2.6. The Lyon Shipwrecks (France)
3. Results and Discussion
3.1. Direct Exposure Mass Spectrometry (DE-MS)
3.2. Evolved Gas Analysis Mass Spectrometry (EGA-MS)
3.3. Single-Shot Py(HMDS)-GC/MS
3.4. Double-Shot Py(HMDS)-GC/MS
4. Conclusions
- DE-MS facilitates the analysis of a high number of samples in a short time. Differences and similarities between and within wooden samples at a screening level are highlighted by applying principal component analysis (PCA) to the mass spectral data. This method highlights differences in wood degradation pathways, especially in terms of loss of carbohydrates and alteration/depolymerisation/oxidation undergone by lignin.
- EGA-MS facilitates quali-quantitative investigations of wood components in terms of thermo-chemistry, chemical composition, and distribution of pyrolysis products. In addition to the information obtained by the thermographic profiles, the comparison of the relative amounts of lignin pyrolysis products with a carbonyl group at the benzylic position is a powerful approach to highlight the differences in oxidation of both guaiacyl and syringyl lignin. The changes in the relative amounts of lignin dimers are an indication of lignin depolymerisation.
- Single-shot Py(HMDS)-GC/MS provides information on the chemical changes undergone by the residual lignin in archaeological wood, and is fundamental especially when the calculation of the H/L and S/G ratios is not sufficient to highlight differences in the preservation state. The categorisation of lignin pyrolysis products into classes highlights alterations in the side chains of the phenylpropanoid units and oxidation. Specific degradation products, such as p-hydroxybenzoic acid (Oseberg samples) or methyl esters (La Marmotta samples), provide key evidence of the possible causes of lignin degradation in archaeological wood.
- Double-shot Py(HMDS)-GC/MS is a promising approach, which can be applied in combination with EGA-MS to some complex samples containing both wood and consolidating/restoration agents. It reduces the difficulty of interpreting pyrograms containing extremely large numbers of pyrolysis products by producing two simpler chromatograms containing the pyrolysis products of only a fraction of the sample.
Funding
Data Availability Statement
Conflicts of Interest
References
- Rowell, R.M.; Barbour, R.J. Archaeological Wood Properties, Chemistry, and Preservation; Advances in Chemistry Series; American Chemical Society: Washington, DC, USA, 1990. [Google Scholar]
- Hedges, J.I. The Chemistry of Archaeological Wood. In Archaeological Wood; Rowell, R.M., Barbour, R.J., Eds.; American Chemical Society: Washington, DC, USA, 1990; pp. 111–140. [Google Scholar]
- Nilsson, T.; Rowell, R. Historical wood-structure and properties. J. Cult. Herit. 2012, 13, S5–S9. [Google Scholar] [CrossRef]
- Blanchette, R.A. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Łucejko, J.J.; Mattonai, M.; Zborowska, M.; Tamburini, D.; Cofta, G.; Cantisani, E.; Kúdela, J.; Cartwright, C.; Colombini, M.P.; Ribechini, E.; et al. Deterioration effects of wet environments and brown rot fungus Coniophora puteana on pine wood in the archaeological site of Biskupin (Poland). Microchem. J. 2018, 138, 132–146. [Google Scholar] [CrossRef]
- Singh, A.P. A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. J. Cult. Herit. 2012, 13, S16–S20. [Google Scholar] [CrossRef]
- Tamburini, D.; Łucejko, J.J.; Zborowska, M.; Modugno, F.; Prądzyński, W.; Colombini, M.P. Archaeological wood degradation at the site of Biskupin (Poland): Wet chemical analysis and evaluation of specific Py-GC/MS profiles. J. Anal. Appl. Pyrolysis 2015, 115, 7–15. [Google Scholar] [CrossRef]
- Braovac, S.; Tamburini, D.; Łucejko, J.J.; McQueen, C.; Kutzke, H.; Colombini, M.P. Chemical analyses of extremely degraded wood using analytical pyrolysis and inductively coupled plasma atomic emission spectroscopy. Microchem. J. 2016, 124, 368–379. [Google Scholar] [CrossRef]
- Tamburini, D.; Łucejko, J.J.; Pizzo, B.; Mohammed, M.Y.; Sloggett, R.; Colombini, M.P. A critical evaluation of the degradation state of dry archaeological wood from Egypt by SEM, ATR-FTIR, wet chemical analysis and Py(HMDS)-GC-MS. Polym. Degrad. Stab. 2017, 146, 140–154. [Google Scholar] [CrossRef]
- Łucejko, J.J.; La Nasa, J.; McQueen, C.M.A.; Braovac, S.; Colombini, M.P.; Modugno, F. Protective effect of linseed oil varnish on archaeological wood treated with alum. Microchem. J. 2018, 139, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Traoré, M.; Kaal, J.; Martínez Cortizas, A. Potential of pyrolysis-GC–MS molecular fingerprint as a proxy of Modern Age Iberian shipwreck wood preservation. J. Anal. Appl. Pyrolysis 2017, 126, 1–13. [Google Scholar] [CrossRef]
- Braovac, S.; McQueen, C.M.A.; Sahlstedt, M.; Kutzke, H.; Łucejko, J.J.; Klokkernes, T. Navigating conservation strategies: Linking material research on alum-treated wood from the Oseberg collection to conservation decisions. Herit. Sci. 2018, 6, 77. [Google Scholar] [CrossRef]
- Han, L.; Guo, J.; Wang, K.; Grönquist, P.; Li, R.; Tian, X.; Yin, Y. Hygroscopicity of Waterlogged Archaeological Wood from Xiaobaijiao No.1 Shipwreck Related to Its Deterioration State. Polym. Adv. Technol. 2020, 12, 834. [Google Scholar] [CrossRef] [Green Version]
- Aluri, E.R.; Reynaud, C.; Bardas, H.; Piva, E.; Cibin, G.; Mosselmans, J.F.W.; Chadwick, A.V.; Schofield, E.J. The Formation of Chemical Degraders during the Conservation of a Wooden Tudor Shipwreck. ChemPlusChem 2020, 85, 1632–1638. [Google Scholar] [CrossRef] [PubMed]
- Łucejko, J.J.; Modugno, F.; Ribechini, E.; Tamburini, D.; Colombini, M.P. Analytical instrumental techniques to study archaeological wood degradation. Appl. Spectrosc. Rev. 2015, 50, 584–625. [Google Scholar] [CrossRef]
- Martín-Seijo, M.; Sartal Lorenzo, M.; Kaal, J.; Teira-Brión, A. A Multi-Disciplinary Study of Woodcrafts and Plant Remains that Reveals the History of Pontevedra’s Harbour (Northwest Iberia) Between the 13th and 19th Centuries AD. Environ. Archaeol. 2018, 1–17. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, M.; Liu, J.A.; Luo, R.; Yan, T.; Yang, T.; Jiang, X.; Dong, M.; Yin, Y. Evaluation of the Deterioration State of Archaeological Wooden Artifacts: A Nondestructive Protocol based on Direct Analysis in Real Time—Mass Spectrometry (DART-MS) Coupled to Chemometrics. Anal. Chem. 2020, 92, 9908–9915. [Google Scholar] [CrossRef] [PubMed]
- High, K.E.; Penkman, K.E.H. A review of analytical methods for assessing preservation in waterlogged archaeological wood and their application in practice. Herit. Sci. 2020, 8, 83. [Google Scholar] [CrossRef]
- Dedic, D.; Iversen, T.; Ek, M. Cellulose degradation in the vasa: The role of acids and rust. Stud. Conserv. 2013, 58, 308–313. [Google Scholar] [CrossRef]
- Bjurhager, I.; Halonen, H.; Lindfors, E.L.; Iversen, T.; Almkvist, G.; Gamstedt, E.K.; Berglund, L.A. State of degradation in archeological oak from the 17th century vasa ship: Substantial strength loss correlates with reduction in (holo)cellulose molecular weight. Biomacromolecules 2012, 13, 2521–2527. [Google Scholar] [CrossRef]
- Bardet, M.; Gerbaud, G.; Giffard, M.; Doan, C.; Hediger, S.; Le Pape, L. 13C High-resolution Solid-State NMR for structural elucidation of archaeological woods. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 199–214. [Google Scholar] [CrossRef]
- Giachi, G.; Bettazzi, F.; Chimichi, S.; Staccioli, G. Chemical characterisation of degraded wood in ships discovered in a recent excavation of the Etruscan and Roman harbour of Pisa. J. Cult. Herit. 2003, 4, 75–83. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Popescu, M.-C.; Vasile, C. Structural changes in biodegraded lime wood. Carbohydr. Polym. 2010, 79, 362–372. [Google Scholar] [CrossRef]
- Macchioni, N.; Pizzo, B.; Capretti, C.; Pecoraro, E.; Sozzi, L.; Lazzeri, S. New Wooden Archaeological Finds from Herculaneum: The State of Preservation and Hypothesis of Consolidation of the Material from the House of the Relief of Telephus. Archaeometry 2015, 58, 1024–1037. [Google Scholar] [CrossRef]
- Hedges, J.I.; Cowie, G.L.; Ertel, J.R.; James Barbour, R.; Hatcher, P.G. Degradation of carbohydrates and lignins in buried woods. Geochim. Cosmochim. Acta 1985, 49, 701–711. [Google Scholar] [CrossRef]
- Saiz-Jimenez, C.; de Leeuw, J.W. Pyrolysis-gas chromatography-mass spectrometry of isolated, synthetic and degraded lignins. Org. Geochem. 1984, 6, 417–422. [Google Scholar] [CrossRef]
- Martínez, A.T.; Camarero, S.; Gutiérrez, A.; Bocchini, P.; Galletti, G.C. Studies on wheat lignin degradation by Pleurotus species using analytical pyrolysis. J. Anal. Appl. Pyrolysis 2001, 58, 401–411. [Google Scholar] [CrossRef]
- van Bergen, P.F.; Poole, I.; Ogilvie, T.M.; Caple, C.; Evershed, R.P. Evidence for demethylation of syringyl moieties in archaeological wood using pyrolysis-gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 71–79. [Google Scholar] [CrossRef]
- Pedersen, N.B.; Łucejko, J.J.; Modugno, F.; Björdal, C. Correlation between bacterial decay and chemical changes in waterlogged archaeological wood analysed by light microscopy and Py-GC/MS. Holzforschung 2020. [Google Scholar] [CrossRef]
- Tamburini, D.; Łucejko, J.J.; Modugno, F.; Colombini, M.P. Characterisation of archaeological waterlogged wood from Herculaneum by pyrolysis and mass spectrometry. Int. Biodeterior. Biodegrad. 2014, 86, 142–149. [Google Scholar] [CrossRef]
- Colombini, M.P.; Łucejko, J.J.; Modugno, F.; Orlandi, M.; Tolppa, E.-L.; Zoia, L. A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta 2009, 80, 61–70. [Google Scholar] [CrossRef]
- Colombini, M.P.; Orlandi, M.; Modugno, F.; Tolppa, E.-L.; Sardelli, M.; Zoia, L.; Crestini, C. Archaeological wood characterisation by PY/GC/MS, GC/MS, NMR and GPC techniques. Microchem. J. 2007, 85, 164–173. [Google Scholar] [CrossRef]
- Tamburini, D.; Łucejko, J.J.; Ribechini, E.; Colombini, M.P. Snapshots of lignin oxidation and depolymerization in archaeological wood: An EGA-MS study. J. Mass Spectrom. 2015, 50, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Lucejko, J.J.; Tamburini, D.; Zborowska, M.; Babiński, L.; Modugno, F.; Colombini, M.P. Oak wood degradation processes induced by the burial environment in the archaeological site of Biskupin (Poland). Herit. Sci. 2020, 8, 44. [Google Scholar] [CrossRef]
- Lucejko, J.J.; Colombini, M.P.; Ribechini, E. Chemical alteration patterns of ancient Egyptian papyri studied by Pyrolysis-GC/MS with in situ silylation. J. Anal. Appl. Pyrolysis 2020, 152, 104967. [Google Scholar] [CrossRef]
- Tamburini, D.; Łucejko, J.J.; Modugno, F.; Colombini, M.P. Combined pyrolysis-based techniques to evaluate the state of preservation of archaeological wood in the presence of consolidating agents. J. Anal. Appl. Pyrolysis 2016, 112, 429–441. [Google Scholar] [CrossRef]
- Łucejko, J.J.; Zborowska, M.; Modugno, F.; Colombini, M.P.; Pradzynski, W. Analytical pyrolysis vs. classical wet chemical analysis to assess the decay of archaeological waterlogged wood. Anal. Chim. Acta 2012, 745, 70–77. [Google Scholar] [CrossRef]
- Modugno, F.; Ribechini, E.; Calderisi, M.; Giachi, G.; Colombini, M.P. Analysis of lignin from archaeological waterlogged wood by direct exposure mass spectrometry (DE-MS) and PCA evaluation of mass spectral data. Microchem. J. 2008, 88, 186–193. [Google Scholar] [CrossRef]
- Łucejko, J.J.; Modugno, F.; Colombini, M.P.; Zborowska, M. Archaeological wood from the Wieliczka Salt Mine Museum, Poland—Chemical analysis of wood degradation by Py(HMDS)-GC/MS. J. Cult. Herit. 2012, 13, S50–S56. [Google Scholar] [CrossRef]
- Zoia, L.; Tamburini, D.; Orlandi, M.; Łucejko, J.J.; Salanti, A.; Tolppa, E.-L.; Modugno, F.; Colombini, M.P. Chemical characterisation of the whole plant cell wall of archaeological wood: An integrated approach. Anal. Bioanal. Chem. 2017, 1–13. [Google Scholar] [CrossRef]
- Traoré, M.; Kaal, J.; Martínez Cortizas, A. FTIR and Py–GC–MS data of wood from various living oak species and Iberian shipwrecks. Data Brief 2018, 21, 1861–1863. [Google Scholar] [CrossRef]
- Moldoveanu, S.C. Analytical Pyrolysis of Natural Organic Polymers; Elsevier Science: Amsterdam, The Netherlands, 1998; Volume 20. [Google Scholar]
- Degano, I.; Modugno, F.; Bonaduce, I.; Ribechini, E.; Colombini, M.P. Recent Advances in Analytical Pyrolysis to Investigate Organic Materials in Heritage Science. Angew. Chem. Int. Ed. 2018, 57, 7313–7323. [Google Scholar] [CrossRef]
- Saiz-Jimenez, C.; de Leeuw, J.W. Lignin pyrolysis products: Their structures and their significance as biomarkers. Org. Geochem. 1986, 10, 869–876. [Google Scholar] [CrossRef] [Green Version]
- Faix, O.; Meier, D.; Grobe, I. Studies on isolated lignins and lignins in woody materials by pyrolysis-gas chromatography-mass spectrometry and off-line pyrolysis-gas chromatography with flame ionization detection. J. Anal. Appl. Pyrolysis 1987, 11, 403–416. [Google Scholar] [CrossRef]
- Pouwels, A.D.; Boon, J.J. Analysis of beech wood samples, its milled wood lignin and polysaccharide fractions by curie-point and platinum filament pyrolysis-mass spectrometry. J. Anal. Appl. Pyrolysis 1990, 17, 97–126. [Google Scholar] [CrossRef]
- Salanti, A.; Zoia, L.; Tolppa, E.L.; Giachi, G.; Orlandi, M. Characterization of waterlogged wood by NMR and GPC techniques. Microchem. J. 2010, 95, 345–352. [Google Scholar] [CrossRef]
- Oudemans, T.F.M.; Eijkel, G.B.; Boon, J.J. Identifying biomolecular origins of solid organic residues preserved in Iron Age Pottery using DTMS and MVA. J. Archaeol. Sci. 2007, 34, 173–193. [Google Scholar] [CrossRef]
- Colombini, M.P.; Łucejko, J.; Modugno, F.; Ribechini, E. Characterisation of archaeological waterlogged wood by Direct exposure mass spectrometry (DE-MS) and Pyrolysis/Gas Chromatography/Mass Spectrometry (Py-GC/MS). In Proceedings of the ICOM-WOAM, Amsterdam, The Netherlands, 11–15 September 2007. [Google Scholar]
- Colombini, M.P.; Modugno, F.; Ribechini, E. Direct exposure electron ionization mass spectrometry and gas chromatography/mass spectrometry techniques to study organic coatings on archaeological amphorae. J. Mass Spectrom. 2005, 40, 675–687. [Google Scholar] [CrossRef]
- Modugno, F.; Ribechini, E.; Colombini, M.P. Chemical study of triterpenoid resinous materials in archaeological findings by means of direct exposure electron ionisation mass spectrometry and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1787–1800. [Google Scholar] [CrossRef]
- van der Hage, E.R.E.; Mulder, M.M.; Boon, J.J. Structural characterization of lignin polymers by temperature-resolved in-source pyrolysis—mass spectrometry and Curie-point pyrolysis—gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis 1993, 25, 149–183. [Google Scholar] [CrossRef]
- Łucejko, J.J. Waterlogged Archaeological Wood: Chemical Study of Wood Degradation and Evaluation of Consolidation Treatments; VDM Verlag Dr Muller: Saarbrucken, Germany, 2010. [Google Scholar]
- Łucejko, J.J.; Modugno, F.; Ribechini, E.; del Río, J.C. Characterisation of archaeological waterlogged wood by pyrolytic and mass spectrometric techniques. Anal. Chim. Acta 2009, 654, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, D.; Cartwright, C.R.; Gasson, P.; Łucejko, J.J.; Leme, C.L.D. Using analytical pyrolysis and scanning electron microscopy to evaluate charcoal formation of four wood taxa from the caatinga of north-east Brazil. J. Anal. Appl. Pyrolysis 2020, 151, 104909. [Google Scholar] [CrossRef]
- Nardella, F.; Mattonai, M.; Ribechini, E. Evolved gas analysis-mass spectrometry and isoconversional methods for the estimation of component-specific kinetic data in wood pyrolysis. J. Anal. Appl. Pyrolysis 2020, 145, 104725. [Google Scholar] [CrossRef]
- Mattonai, M.; Watanabe, A.; Shiono, A.; Ribechini, E. Degradation of wood by UV light: A study by EGA-MS and Py-GC/MS with on line irradiation system. J. Anal. Appl. Pyrolysis 2019, 139, 224–232. [Google Scholar] [CrossRef]
- Bonaduce, I.; Andreotti, A. Py-GC/MS of Organic Paint Binders. In Organic Mass Spectrometry in Art and Archeology; Colombini, M.P., Modugno, F., Eds.; Wiley: Chichester, UK, 2009; pp. 303–326. [Google Scholar]
- Challinor, J.M. Review: The development and applications of thermally assisted hydrolysis and methylation reactions. J. Anal. Appl. Pyrolysis 2001, 61, 3–34. [Google Scholar] [CrossRef]
- Fabbri, D.; Chiavari, G. Analytical pyrolysis of carbohydrates in the presence of hexamethyldisilazane. Anal. Chim. Acta 2001, 449, 271–280. [Google Scholar] [CrossRef]
- Kuroda, K.-I. Pyrolysis-trimethylsilylation analysis of lignin: Preferential formation of cinnamyl alcohol derivatives. J. Anal. Appl. Pyrolysis 2000, 56, 79–87. [Google Scholar] [CrossRef]
- Tamburini, D.; Łucejko, J.J.; Ribechini, E.; Colombini, M.P. New markers of natural and anthropogenic chemical alteration of archaeological lignin revealed by in situ pyrolysis/silylation-gas chromatography-mass spectrometry. J. Anal. Appl. Pyrolysis 2016, 118, 249–258. [Google Scholar] [CrossRef]
- Tamburini, D. From the Burial Environment to the Laboratory: The Analytical Challenge of Archaeological Wood. Ph.D. Thesis, University of Pisa, Pisa, Italy, 2015. [Google Scholar]
- Babiński, L.; Fejfer, M.; Prądzyński, W. Environmental Monitoring at the Lusatian Culture Settlement in Biskupin, Poland. In Journal of Wetland Archaeology; Coles, B., Ed.; Oxbow Books: Oxford, UK, 2007; pp. 51–72. [Google Scholar]
- Babiński, L.; Prądzyński, W. Ocena warunków zalegania i stopnia degradacji drewna biskupińskiego. Cele i zakres projektu badawczego. In Proceedings of the 22 Sympozjum “Ochrona Drewna”, Warszawa, Poland, 14–16 September 2004; pp. 43–50. [Google Scholar]
- Fugazzola Delpino, M.A.; D’Eugenio, G.; Pessina, A. “La Marmotta” (Anguillara Sabazia, RM). Scavi 1989. Un abitato perilacustre di età neolitica. Bull. Paletnol. Ital. 1993, 84, 181–304. [Google Scholar]
- Fugazzola Delpino, M.A. Su alcuni funghi rinvenuti nel villaggio neolitico de “La Marmotta” (Anguillara Sabazia, Roma). Considerazioni preliminari. Bull. Paletnol. Ital. 2004, 95, 1–20. [Google Scholar]
- Bonde, N.; Christensen, A.E. Dendrochronological dating ofthe Viking Age ship burials at Oseberg, Gokstad and Tune, Norway. Antiquity 1993, 67, 575–583. [Google Scholar] [CrossRef]
- Brøgger, A.W.; Shetelig, H.; Falk, H. Osebergfundet; Distribuert ved Universitetets Oldsaksamling: Oslo, Norway, 1917. [Google Scholar]
- McQueen, C.M.A.; Tamburini, D.; Łucejko, J.J.; Braovac, S.; Gambineri, F.; Modugno, F.; Colombini, M.P.; Kutzke, H. New insights into the degradation processes and influence of the conservation treatment in alum-treated wood from the Oseberg collection. Microchem. J. 2017, 132, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Bruni, S. The urban harbour of Pisae and the wrecks discovered at the Pisa–San Rossore railway station. In Le Navi Antiche Di Pisa Ad Un Anno Dall’Inizio Delle Ricerche; Bruni, S., Ed.; Polistampa: Florence, Italy, 2000; pp. 21–79. [Google Scholar]
- Eggers, H.J. Die wendischen Burgwälle in Mittelpommern. Balt. Stud. 1960, 47, 13–46. [Google Scholar]
- Kaźmierczak, R.; Niegowski, J. Sprawozdanie Z Podwodnych Badań Sondażowych Przeprowadzonych Przy Stanowiskach Archeologicznych W Powiatach Drawsko Pomorskie Oraz Szczecinek; University of Toruń, Instytut of Archaeology: Toruń, Poland, 2003. [Google Scholar]
- Chaumat, G.; Blanc, L.; Albino, C. Study of the azelaic/palmitic acids association to treat waterlogged archaeological wood. In Proceedings of the 11th ICOM-CC Group on Wet Organic Archaeological Materials Conference, Greenville, SC, USA, 11–15 October 2010; pp. 207–217. [Google Scholar]
- Saiz-Jimenez, C.; Boon, J.J.; Hedges, J.I.; Hessels, J.K.C.; De Leeuw, J.W. Chemical characterization of recent and buried woods by analytical pyrolysis. Comparison of pyrolysis data with 13C NMR and wet chemical data. J. Anal. Appl. Pyrolysis 1987, 11, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Klap, V.A.; Boon, J.J.; Hemminga, M.A.; van Soelen, J. Chemical characterization of lignin preparations of fresh and decomposing Spartina anglica by pyrolysis mass spectrometry. Org. Geochem. 1998, 28, 707–727. [Google Scholar] [CrossRef]
- Faix, O.; Bremer, J.; Meier, D.; Fortmann, I.; Scheijen, M.A.; Boon, J.J. Characterization of tobacco lignin by analytical pyrolysis and Fourier transform-infrared spectroscopy. J. Anal. Appl. Pyrolysis 1992, 22, 239–259. [Google Scholar] [CrossRef]
- MacKay, J.; Dimmel, D.R.; Boon, J.J. Pyrolysis Mass Spectral Characterization of Wood from Cad-Deficient Pine. J. Wood Chem. Technol. 2001, 21, 19–29. [Google Scholar] [CrossRef]
- Mulder, M.M.; Pureveen, J.B.M.; Boon, J.J.; Martinez, A.T. An analytical pyrolysis mass spectrometric study of Eucryphia cordifolia wood decayed by white-rot and brown-rot fungi. J. Anal. Appl. Pyrolysis 1991, 19, 175–191. [Google Scholar] [CrossRef]
- van der Hage, E.R.E. Pyrolysis Mass Spectrometry of Lignin Polymers. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 1995. [Google Scholar]
- Wold, H. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis; Krishnaiah, P., Ed.; Academic Press: New York, NY, USA, 1966; pp. 391–420. [Google Scholar]
- Pouwels, A.D.; Eijkel, G.B.; Boon, J.J. Curie-point pyrolysis-capillary gas chromatography-high-resolution mass spectrometry of microcrystalline cellulose. J. Anal. Appl. Pyrolysis 1989, 14, 237–280. [Google Scholar] [CrossRef]
- Ralph, J.; Hatfield, R.D. Pyrolysis-GC-MS characterization of forage materials. J. Agric. Food Chem. 1991, 39, 1426–1437. [Google Scholar] [CrossRef]
- Galletti, G.C.; Bocchini, P. Pyrolysis/gas chromatography/mass spectrometry of lignocellulose. Rapid Commun. Mass Spectrom. 1995, 9, 815–826. [Google Scholar] [CrossRef]
- Alén, R.; Kuoppala, E.; Oesch, P. Formation of the main degradation compound groups from wood and its components during pyrolysis. J. Anal. Appl. Pyrolysis 1996, 36, 137–148. [Google Scholar] [CrossRef]
- Hosoya, T.; Kawamoto, H.; Saka, S. Cellulose–hemicellulose and cellulose–lignin term interactions in wood pyrolysis at gasification temperature. J. Anal. Appl. Pyrolysis 2007, 80, 118–125. [Google Scholar] [CrossRef]
- Kotake, T.; Kawamoto, H.; Saka, S. Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin. J. Anal. Appl. Pyrolysis 2014, 105, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Kotake, T.; Kawamoto, H.; Saka, S. Pyrolytic formation of monomers from hardwood lignin as studied from the reactivities of the primary products. J. Anal. Appl. Pyrolysis 2015, 113, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Shimada, M. Stereobiochemical approach to lignin biodegradation: Possible significance of nonstereospecific oxidation catalyzed by laccase for lignin decomposition by white-rot fungi. In Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications; Kirk, T.K., Higuchi, T., Chang, H.-M., Eds.; CRC Press: Boca Raton, FL, USA, 1980. [Google Scholar]
- Lourenço, A.; Gominho, J.; Marques, A.V.; Pereira, H. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC–MS/FID. Bioresour. Technol. 2012, 123, 296–302. [Google Scholar] [CrossRef]
- Vinciguerra, V.; Napoli, A.; Bistoni, A.; Petrucci, G.; Sgherzi, R. Wood decay characterization of a naturally infected London plane-tree in urban environment using Py-GC/MS. J. Anal. Appl. Pyrolysis 2007, 78, 228–231. [Google Scholar] [CrossRef]
- Tamburini, D.; Łucejko, J.J.; Zborowska, M.; Modugno, F.; Cantisani, E.; Mamoňová, M.; Colombini, M.P. The short-term degradation of cellulosic pulp in lake water and peat soil: A multi-analytical study from the micro to the molecular level. Int. Biodeterior. Biodegrad. 2017, 116, 243–259. [Google Scholar] [CrossRef]
- del Río, J.C.; Gutiérrez, A.; Hernando, M.; Landín, P.; Romero, J.; Martínez, Á.T. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J. Anal. Appl. Pyrolysis 2005, 74, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Martínez, Á.T.; Speranza, M.; Ruiz-Dueñas, F.J.; Ferreira, P.; Camarero, S.; Guillén, F.; Martínez, M.J.; Gutiérrez, A.; del Río, J.C. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 2005, 8, 195–204. [Google Scholar]
- Lu, R.; Kamiya, Y.; Miyakoshi, T. Applied analysis of lacquer films based on pyrolysis-gas chromatography/mass spectrometry. Talanta 2006, 70, 370–376. [Google Scholar] [CrossRef]
- Rahimi, A.; Ulbrich, A.; Coon, J.J.; Stahl, S.S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 2014, 515, 249–252. [Google Scholar] [CrossRef]
- Tabassum, S.; Sulaiman, O.; Ibrahim, M.; Hashim, R.; Altamash, T. Removal of chemically hazardous p-hydroxybenzoic acid during total chlorine free bleaching process of Hevea Brasiliensis. J. Clean. Prod. 2012, 25, 68–72. [Google Scholar] [CrossRef]
- Partenheimer, W. The aerobic oxidative cleavage of lignin to produce hydroxy-aromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic/water mixtures. Adv. Synth. Catal. 2009, 351, 456–466. [Google Scholar] [CrossRef]
- Araújo, J.D.P.; Grande, C.A.; Rodrigues, A.E. Vanillin production from lignin oxidation in a batch reactor. Chem. Eng. Res. Des. 2010, 88, 1024–1032. [Google Scholar] [CrossRef]
- Ohra-Aho, T.; Tenkanen, M.; Tamminen, T. Direct analysis of lignin and lignin-like components from softwood kraft pulp by Py-GC/MS techniques. J. Anal. Appl. Pyrolysis 2005, 74, 123–128. [Google Scholar] [CrossRef]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. Torrefaction of wood: Part 2. Analysis of products. J. Anal. Appl. Pyrolysis 2006, 77, 35–40. [Google Scholar] [CrossRef]
- Nocquet, T.; Dupont, C.; Commandre, J.-M.; Grateau, M.; Thiery, S.; Salvador, S. Volatile species release during torrefaction of wood and its macromolecular constituents: Part 1—Experimental study. Energy 2014, 72, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Fernández de Simón, B.; Martínez, J.; Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M. Volatile compounds and sensorial characterisation of red wine aged in cherry, chestnut, false acacia, ash and oak wood barrels. Food Chem. 2014, 147, 346–356. [Google Scholar] [CrossRef]
- Culleré, L.; Fernández de Simón, B.; Cadahía, E.; Ferreira, V.; Hernández-Orte, P.; Cacho, J. Characterization by gas chromatography–olfactometry of the most odor-active compounds in extracts prepared from acacia, chestnut, cherry, ash and oak woods. LWT Food Sci. Technol. 2013, 53, 240–248. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Franco, E.; Huerta, C.G.; García, J.M.; Cabellos, M.; Suberviola, J.; Orriols, I.; Cacho, J. Criteria to discriminate between wines aged in oak barrels and macerated with oak fragments. Food Res. Int. 2014, 57, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Sandström, M.; Jalilehvand, F.; Persson, I.; Gelius, U.; Frank, P.; Hall-Roth, I. Deterioration of the seventeenth-century warship Vasa by internal formation of sulphuric acid. Nature 2002, 415, 893–897. [Google Scholar] [CrossRef]
- Preston, J.; Smith, A.D.; Schofield, E.J.; Chadwick, A.V.; Jones, M.A.; Watts, J.E.M. The effects of Mary Rose conservation treatment on iron oxidation processes and microbial communities contributing to acid production in marine archaeological timbers. PLoS ONE 2014, 9, e84169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hocker, E.; Almkvist, G.; Sahlstedt, M. The Vasa experience with polyethylene glycol: A conservator’s perspective. J. Cult. Herit. 2012, 13, S175–S182. [Google Scholar] [CrossRef]
Archaeological Site | Wood Fragment | Sample Description | Species | Analytical Techniques Applied | Ref |
---|---|---|---|---|---|
Biskupin (Poland) | Oak 4 Oak 6 | 4 samples collected from two fragments of wooden parts from the pavement of the ancient settlement. Samples A, B, and C from Oak 4, and one sample from Oak 6. | Oak (Quercus spp.) | Direct Exposure Mass Spectrometry (DE-MS) * Pyrolysis (Hexamethyldisylazane)-Gas Chromatography/Mass Spectrometry (Py(HMDS)-GC/MS) † | [7,53] |
Marmotta (Italy) | Pile 2212 | 7 samples collected from the external part to the core of the pile, following its annual growth rings in groups of five and labelled from A to G. | Oak (Quercus spp.) | DE-MS * Evolved Gas Analysis Mass Spectrometry (EGA-MS) ‡ Py(HMDS)-GC/MS § | [33,62] |
Oseberg collection (Norway) | Fragment 185 | 6 samples from fragment 185 treated with alum in 1905-12. The object had broken up into 6 parts at some point before or after the treatment. Sample 185-1 had the best visual conditions, whereas 185-6 was in the worst condition. | Diffuse porous ring species—probably birch (Betula spp.) or alder (Alnus spp.) | Py(HMDS)-GC/MS § | [8,63] |
San Rossore (Italy) | 4 shipwrecks | 9 samples collected from 4 different shipwrecks. | Beech (Fagus spp.) Elm (Ulmus spp.) Pine (Pinus spp.) | DE-MS * | [53,54] |
Żółte (Poland) | 5 samples collected from different wooden objects. | Alder (Alnus spp.) Beech (Fagus spp.) Oak (Quercus spp.) | DE-MS * | [37,53] | |
Lyon (France) | Lyon2 ship | 2 samples from the Lyon2 ship (2nd century AD) | Oak (Quercus spp.) Pine (Pinus spp.) | EGA-MS ‡ Single-shot and double-shot Py(HMDS)-GC/MS § | [36] |
m/z | Molecular Origin | Wood Component | References |
---|---|---|---|
65 | present in many pyrolysis products of both lignin and carbohydrates | L/C | [82,83,84] |
77 | present in many pyrolysis products of both lignin and carbohydrates | L/C | [82,83,84] |
91 | alkylbenzenes | L | [83] |
94 | phenol | L | [52,82,83,84] |
107 | alkylphenols | L | [52,83] |
110 | 1,2-dihydroxybenzene; 1,4-dihydroxybenzene; 5-methyl-2-furaldehyde; 2-acetylfuran | L/C | [54,82,83,84] |
123 | 4-methylcatechol; 4-methylguaiacol; dihydrocaffeic acid | L | [52,54,83,84] |
124 | guaiacol; 4-methylcatechol; coniferyl alcohol | G | [38,52,54,83,84] |
137 | 4-ethylguaiacol; 4- propylguaiacol; coniferyl alcohol; dihydroconiferyl alcohol; guaiacylacetone, homovanillin | G | [38,52,54,83,84] |
138 | 4-methylguaiacol | G | [38,52,54,83,84] |
150 | 4-vinylguaiacol | G | [38,52,54,83,84] |
151 | vanillin; acetovanillone; vanillic acid methyl ester; propiovanillone;guaiacyl vinyl ketone; vanillic acid | G | [38,52,54,83,84] |
152 | 4-ethylguaiacol; vanillin; coniferyl alcohol | G | [38,52,54,83,84] |
154 | Syringol | S | [38,52,54,83,84] |
164 | eugenol; isoeugenol (E and Z); p-coumaric acid | G | [38,52,54,83,84] |
166 | acetovanillone; 4-propylguaiacol | G | [52,54,83,84] |
167 | 4-ethylsyringol; 4-propylsyringol; sinapyl alcohol; dihydrosinapyl alcohol; syringylacetone | S | [38,52,54,83,84] |
168 | vanillic acid; 4-methylsyringol | G/S | [38,52,54,83,84] |
178 | Coniferylaldehyde | G | [38,52,54,83,84] |
180 | coniferyl alcohol, 4-vinylsyringol; guaiacylacetone; propiovanillone | G/S | [38,52,54,83,84] |
181 | syringaldehyde; acetosyringone; syringic acid methyl ester; propiosyringone; syringyl vinyl ketone; syringic acid | S | [38,52,54,83,84] |
182 | 4-ethylsyringol; syringaldehyde; dihydroconiferyl alcohol; vanillic acid methyl ester; dihydrocaffeic acid; sinapyl alcohol | S/G | [52,54,83,84] |
194 | 4-(1-propenyl)syringol, 4-(2-propenyl)syringol (E and Z); 4-allylsyringol; ferulic acid | S | [38,52,54,83,84] |
196 | acetosyringone; 4-propylsyringol | S | [38,52,54,83,84] |
198 | Syringic acid | S | [38,52,54,83,84] |
208 | Sinapylaldehyde | S | [38,52,54,83,84] |
210 | sinapyl alcohol; syringylacetone; propiosyringone | S | [38,52,54,83,84] |
212 | dihydrosinapyl alcohol; syringic acid methyl ester | S | [52,54,83,84] |
272 | stilbene-type dimer | G-G dimer | [38,52] |
302 | stilbene-type dimer | G-S dimer | [38,52] |
332 | stilbene-type dimer | S-S dimer | [38,52] |
358 | β-resinol type dimer | G-G dimer | [38,52] |
388 | β-resinol type dimer | G-S dimer | [38,52] |
418 | β-resinol type dimer | S-S dimer | [38,52] |
N° | Compound | L. cat. | N° | Compound | L. cat. |
---|---|---|---|---|---|
1 | 1,2-dihydroxyethane (2TMS) | 59 | 5-methyl-3-methoxy-1,2-benzenediol (2TMS) | D | |
2 | 2-hydroxymethylfuran (TMS) | 60 | 4-ethylsyringol (TMS) | SC | |
3 | phenol (TMS) | 61 | E-isoeugenol (TMS) | LC | |
4 | 2-hydroxypropanoic acid (2TMS) | 62 | 1,4-anhydro-D-galactopyranose (2TMS) | ||
5 | 2-hydroxyacetic acid (2TMS) | 63 | 1,6-anhydro-D-galactopyranose (2TMS) | ||
6 | 1-hydroxy-1-cyclopenten-3-one (TMS) | 64 | 2-hydroxymethyl-5-hydroxy-2,3-dihydro-(4H)-pyran-4-one (2TMS) | ||
7 | 3-hydroxymethylfuran (TMS) | 65 | 4-vinylsyringol (TMS) | SC | |
8 | o-cresol (TMS) | 66 | 1,4-anhydro-D-glucopyranose (2TMS at position 2,4) | ||
9 | 2-furancarboxylic acid (TMS) | 67 | 1,2,4-trihydroxybenzene (3TMS) | ||
10 | unknown holocellulose I | 68 | acetovanillone (TMS) | C | |
11 | m-cresol (TMS) | 69 | 4-hydroxybenzoic acid (2TMS) | A | |
12 | 2-hydroxy-1-cyclopenten-3-one (TMS) | 70 | 4-propenylsyringol (TMS) | LC | |
13 | p-cresol (TMS) | 71 | 1,6-anhydro-β-D-glucopyranose (2TMS at position 2,4) | ||
14 | 3-hydroxy-(2H)-pyran-2-one (TMS) | 72 | vanillic acid methyl ester (TMS) | E | |
15 | unknown holocellulose II | 73 | 5-vinyl-3-methoxy-1,2-benzenediol (2TMS) | D | |
16 | unknown holocellulose III | 74 | Z-4-isopropenylsyringol | LC | |
17 | Z-2,3-dihydroxycyclopent-2-enone (TMS) | 75 | 1,4-anydro-D-galactopyranose (3TMS) | ||
18 | E-2,3-dihydroxycyclopent-2-enone (TMS) | 76 | unknown lignin I | O | |
19 | 1,2-dihydroxybenzene (TMS) | 77 | syringaldehyde (TMS) | C | |
20 | 3-hydroxy-(4H)-pyran-4-one (TMS) | 78 | 2,3,5-trihydroxy-4H-pyran-4-one (3TMS) | ||
21 | 5-hydroxy-(2H)-pyran-4(3H)-one (TMS) | 79 | 1,6-anhydro-β-D-glucopyranose (3TMS) | ||
22 | 2-hydroxymethyl-3-methy-2-cyclopentenone (TMS) | 80 | 1,4-anhydro-D-glucopyranose (3TMS) | ||
23 | 1-hydroxy-2-methyl-1-cyclopenten-3-one (TMS) | 81 | E-4-isopropenylsyringol (TMS) | LC | |
24 | 1-methy-2-hydroxy-1-cyclopenten-3-one (TMS) | 82 | 1,6-anhydro-β-D-glucofuranose (3TMS) | ||
25 | 1,3-dihydroxyacetone (2TMS) | 83 | unknown lignin II | O | |
26 | guaiacol (TMS) | SC | 84 | unknown lignin III | O |
27 | unknown holocellulose IV | 85 | vanillic acid (2TMS) | A | |
28 | 3-hydroxy-6-methyl-(2H)-pyran-2-one (TMS) | 86 | acetosyringone (TMS) | C | |
29 | unknown holocellulose V | 87 | 5-propyl-3-methoxy-1,2-benzenediol (2TMS) | D | |
30 | 2-methyl-3-hydroxy-(4H)-pyran-4-one (TMS) | 88 | coumaryl alcohol (2TMS) | D | |
31 | 2-methyl-3-hydroxymethyl-2-cyclopentenone (TMS) | 89 | syringic acid methyl ester (TMS) | E | |
32 | 2,3-dihydrofuran-2,3-diol (2TMS) | 90 | vanillylpropanol (2TMS) | LC | |
33 | 2-furylhydroxymethylketone (TMS) | 91 | Z-coniferyl alcohol (2TMS) | M | |
34 | 5-hydroxymethyl-2-furaldehyde (TMS) | 92 | 4-hydroxy-3,5-dimethoxycinnamic acid methyl ester (TMS) | E | |
35 | 4-methylguaiacol (TMS) | SC | 93 | coniferylaldehyde (TMS) | C |
36 | 1,2-dihydroxybenzene (2TMS) | 94 | trihydroxycinnamyl alcohol (3TMS) | D | |
37 | 2-hydroxymethyl-2,3-dihydropyran-4-one (TMS) | 95 | syringic acid (2TMS) | A | |
38 | 1,4:3,6-dianhydro-α-D-glucopyranose (TMS) | 96 | unknown lignin IV | O | |
39 | Z-2,3-dihydroxycyclopent-2-enone (2TMS) | 97 | E-coniferyl alcohol(2TMS) | M | |
40 | 4-methylcatechol (2TMS) | D | 98 | 3,4-dihydroxy-5-methoxybenzoic acid (3TMS) | A |
41 | 4-ethylguaiacol (TMS) | SC | 99 | syringylpropanol (2TMS) | LC |
42 | syringol (TMS) | SC | 100 | Z-sinapyl alcohol (2TMS) | M |
43 | 1,4-dihydroxybenzene (2TMS) | 101 | unknown lignin V | O | |
44 | arabinofuranose (4TMS) | 102 | 3,4-dihydroxycinnamyl alcohol (3TMS) | D | |
45 | 4-vinylguaiacol (TMS) | SC | 103 | trihydroxycinnamyl alcohol I (3TMS) | D |
46 | 3-hydroxy-2-hydroxymethyl-2-cyclopentenone (2TMS) | 104 | sinapylaldehyde (TMS) | C | |
47 | E-2,3-dihydroxycyclopent-2-enone (2TMS) | 105 | trihydroxycinnamyl alcohol II (3TMS) | D | |
48 | 4-ethylcatechol (2TMS) | D | 106 | Z-2-methoxy-3,4-dihydroxycinnamyl alcohol (3TMS) | D |
49 | 3-hydroxy-2-(hydroxymethyl) cyclopenta-2,4-dienone (2TMS) | 107 | sinapyl alcohol (TMS) | M | |
50 | eugenol (TMS) | LC | 108 | E-sinapyl alcohol (2TMS) | M |
51 | 4-methylsyringol (TMS) | SC | 109 | E-2-methoxy-3,4-dihydroxycinnamyl alcohol (3TMS) | D |
52 | 3-methoxy-1,2-benzenediol (2TMS) | D | 110 | unknown lignin VI | O |
53 | 3,5-dihydroxy-2-methyl-(4H)-pyran-4-one (2TMS) | 111 | unknown anhydrosugar I (dimer) | ||
54 | 1,6-anhydro-β-D-glucopyranose (TMS at position 4) | 112 | unknown anhydrosugar II (dimer) | ||
55 | 1,6-anhydro-β-D-glucopyranose (TMS at position 2) | 113 | unknown anhydrosugar III (dimer) | ||
56 | Z-isoeugenol (TMS) | LC | 114 | unknown anhydrosugar IV (dimer) | |
57 | vanillin (TMS) | C | 115 | unknown anhydrosugar V (dimer) | |
58 | 1,2,3-trihydroxybenzene (3TMS) | 116 | unknown anhydrosugar VI (dimer) |
Oak Ref | Biskupin | La Marmotta | Birch Ref | Oseberg | ||||||
---|---|---|---|---|---|---|---|---|---|---|
4A | 4B | 4C | 2212A | 2212D | 2212G | 185-1 | 185-6 | |||
Sum H (%) | 77.1 | 38.0 | 63.8 | 74.4 | 14.4 | 14.4 | 21.1 | 75.6 | 20.3 | 3.2 |
Sum L (%) | 22.9 | 62.0 | 36.2 | 25.6 | 85.6 | 85.6 | 78.9 | 24.4 | 79.7 | 96.8 |
H/L | 3.4 | 0.6 | 1.8 | 2.9 | 0.2 | 0.2 | 0.3 | 3.1 | 0.3 | 0.0 |
S/G | 1.6 | 1.1 | 1.7 | 2.3 | 1.3 | 1.9 | 2.3 | 2.4 | 1.4 | 1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucejko, J.J.; Tamburini, D.; Modugno, F.; Ribechini, E.; Colombini, M.P. Analytical Pyrolysis and Mass Spectrometry to Characterise Lignin in Archaeological Wood. Appl. Sci. 2021, 11, 240. https://doi.org/10.3390/app11010240
Lucejko JJ, Tamburini D, Modugno F, Ribechini E, Colombini MP. Analytical Pyrolysis and Mass Spectrometry to Characterise Lignin in Archaeological Wood. Applied Sciences. 2021; 11(1):240. https://doi.org/10.3390/app11010240
Chicago/Turabian StyleLucejko, Jeannette Jacqueline, Diego Tamburini, Francesca Modugno, Erika Ribechini, and Maria Perla Colombini. 2021. "Analytical Pyrolysis and Mass Spectrometry to Characterise Lignin in Archaeological Wood" Applied Sciences 11, no. 1: 240. https://doi.org/10.3390/app11010240
APA StyleLucejko, J. J., Tamburini, D., Modugno, F., Ribechini, E., & Colombini, M. P. (2021). Analytical Pyrolysis and Mass Spectrometry to Characterise Lignin in Archaeological Wood. Applied Sciences, 11(1), 240. https://doi.org/10.3390/app11010240