Development of Simulation Based p-Multipliers for Laterally Loaded Pile Groups in Granular Soil Using 3D Nonlinear Finite Element Model
Abstract
:1. Introduction
2. Summary of p-Multipliers and Group Effect Parameters
3. Finite Element (FE) Model
3.1. Procedure for Extraction of p-Multipliers
3.2. Parametric Study
4. Results and Discussions
4.1. Effect of φ, S/D, Pile Head Fixity and Number of Piles on p-Multipliers
4.2. Comparsion of p-Multipliers and Group Effect Parameters with Experimental Studies
4.3. Comparsion of Group Effect Parameter with Design Codes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poulos, H.G.; Davis, E.H. Pile Foundation Analysis and Design; John Wiley and Sons: New York, NY, USA, 1980. [Google Scholar]
- Ashour, M.; Norris, G.; Pilling, P. Lateral loading of a pile in layered soil using the strain wedge model. J. Geotech. Geoenviron. 1998, 124, 303–315. [Google Scholar] [CrossRef]
- Brown, D.A.; Shie, C.-F. Three dimensional finite element model of laterally loaded piles. Comput. Geotech. 1990, 10, 59–79. [Google Scholar] [CrossRef]
- Muqtadir, A.; Desai, C.S. Three-dimensional analysis of a pile-group foundation. IJNAMG 1986, 10, 41–58. [Google Scholar]
- Trochanis, A.M.; Bielak, J.; Christiano, P. Three-dimensional nonlinear study of piles. Electron. J. Geotech. Eng. 1991, 117, 429–447. [Google Scholar] [CrossRef]
- Yang, Z.; Jeremić, B. Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils. IJNAMG 2002, 26, 1385–1406. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Yoo, M. Study on the dynamic soil-pile-structure interactive behavior in liquefiable sand by 3D numerical simulation. Appl. Sci. 2020, 10, 2723. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.Y.; Yoo, M. Evaluation of dynamic soil-pile-structure interactive behavior in dry sand by 3D numerical simulation. Appl. Sci. 2019, 9, 2612. [Google Scholar] [CrossRef] [Green Version]
- Reese, L.C.; Cox, W.R.; Koop, F.D. Analysis of laterally loaded piles in sand. In Offshore Technology in Civil Engineering: Hall of Fame Papers from the Early Years; ASCE Publications: Reston, VA, USA, 1974; pp. 95–105. [Google Scholar]
- American Petroleum Institute (API). Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms. API Recommended Practice 2A-WSD, 21st ed.; American Petroleum Institute: Washington, DC, USA, 2007; Volume 2. [Google Scholar]
- Murchison, J.M.; O’Neill, M.W. Evaluation of py relationships in cohesionless soils. In Analysis and Design of Pile Foundations; American Society of Civil Engineers: New York, NY, USA, 1984; pp. 174–191. [Google Scholar]
- Zhang, L.; Silva, F.; Grismala, R. Ultimate lateral resistance to piles in cohesionless soils. J. Geotech. Geoenviron. 2005, 131, 78–83. [Google Scholar] [CrossRef]
- McGann, C.R.; Arduino, P.; Mackenzie-Helnwein, P. Applicability of conventional py relations to the analysis of piles in laterally spreading soil. J. Geotech. Geoenviron. 2010, 137, 557–567. [Google Scholar] [CrossRef]
- Fayyazi, M.S. Numerical Study on the Response of Pile Groups under Lateral Loading. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2015. [Google Scholar]
- Rahmani, A.; Taiebat, M.; Finn, W.L.; Ventura, C.E. Evaluation of py springs for nonlinear static and seismic soil-pile interaction analysis under lateral loading. Soil Dyn. Earthq. Eng. 2018, 115, 438–447. [Google Scholar] [CrossRef]
- Larkela, A. Modeling of a Pile Group under Static Lateral Loading. Master’s Thesis, Helsinki University of Technology, Espoo, Finland, 2008. [Google Scholar]
- Brown, D.A.; Morrison, C.; Reese, L.C. Lateral load behavior of pile group in sand. Electron. J. Geotech. Eng. 1988, 114, 1261–1276. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Boominathan, A.; Dodagoudar, G. Group interaction effects on laterally loaded piles in clay. J. Geotech. Geoenviron. 2009, 136, 573–582. [Google Scholar] [CrossRef]
- McVay, M.; Casper, R.; Shang, T.-I. Lateral response of three-row groups in loose to dense sands at 3D and 5D pile spacing. Electron. J. Geotech. Eng. 1995, 121, 436–441. [Google Scholar] [CrossRef]
- Rollins, K.M.; Peterson, K.T.; Weaver, T.J. Lateral load behavior of full-scale pile group in clay. J. Geotech. Geoenviron. 1998, 124, 468–478. [Google Scholar] [CrossRef]
- Rollins, K.; Olsen, R.; Egbert, J.; Olsen, K.; Jensen, D.; Garrett, B. Response, Analysis, and Design of Pile Groups Subjected to Static & Dynamic Lateral Loads; The Utah Department of Transportation Research Division: Salt Lake City, UT, USA, 2003.
- Ruesta, P.F.; Townsend, F.C. Evaluation of laterally loaded pile group at Roosevelt Bridge. J. Geotech. Geoenviron. 1997, 123, 1153–1161. [Google Scholar] [CrossRef]
- Brown, D.A.; Reese, L.C.; O’Neill, M.W. Cyclic lateral loading of a large-scale pile group. Electron. J. Geotech. Eng. 1987, 113, 1326–1343. [Google Scholar] [CrossRef]
- McVay, M.; Zhang, L.; Molnit, T.; Lai, P. Centrifuge testing of large laterally loaded pile groups in sands. J. Geotech. Geoenviron. 1998, 124, 1016–1026. [Google Scholar] [CrossRef]
- Rollins, K.M.; Lane, J.D.; Gerber, T.M. Measured and computed lateral response of a pile group in sand. J. Geotech. Geoenviron. 2005, 131, 103–114. [Google Scholar] [CrossRef]
- Rollins, K.M.; Olsen, R.J.; Egbert, J.J.; Jensen, D.H.; Olsen, K.G.; Garrett, B.H. Pile spacing effects on lateral pile group behavior: Load tests. J. Geotech. Geoenviron. 2006, 132, 1262–1271. [Google Scholar] [CrossRef]
- Walsh, J.M. Full-Scale Lateral Load Test of a 3 × 5 Pile Group in Sand. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2005. [Google Scholar]
- Brown, D.A.; O’Neill, M.; Hoit, M.; McVay, M.; El Naggar, M.; Chakraborty, S. Static and Dynamic Lateral Loading of Pile Groups; TRB: Washington, DC, USA, 2001. [Google Scholar]
- Souri, A.; Abu-Farsakh, M.Y.; Voyiadjis, G.Z. Evaluating the effect of pile spacing and configuration on the lateral resistance of pile groups. Mar. Georesouces Geotechnol. 2020, 1–13. [Google Scholar] [CrossRef]
- Abu-Farsakh, M.; Souri, A.; Voyiadjis, G.; Rosti, F. Comparison of static lateral behavior of three pile group configurations using three-dimensional finite element modeling. Can. Geotech. J. 2018, 55, 107–118. [Google Scholar] [CrossRef]
- Yang, Z.; Jeremić, B. Numerical study of group effects for pile groups in sands. IJNAMG 2003, 27, 1255–1276. [Google Scholar] [CrossRef]
- Albusoda, B.S.; Al-Saadi, A.F.; Jasim, A.F. An experimental study and numerical modeling of laterally loaded regular and finned pile foundations in sandy soils. Comput. Geotech. 2018, 102, 102–110. [Google Scholar] [CrossRef]
- AASHTO. AASHTO LRFD Bridge Design Specifications; American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2012. [Google Scholar]
- Federal Emergency Management Agency (FEMA). Foundation and liquefaction design, FEMA P-1051. In NEHRP Recommended Seismic Provisions: Design Examples; National Institute of Building Sciences: Washington, DC, USA; Building Seismic Safety Council: Washington, DC, USA, 2015. [Google Scholar]
- Morrison, C.S.; Reese, L.C. A Lateral-Load Test of a Full-Scale Pile Group in Sand; The University of Texas at Austin: Austin, TX, USA, 1988. [Google Scholar]
- Christensen, D.S. Full Scale Static Lateral Load Test of a 9 Pile Group in Sand. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2006. [Google Scholar]
- Taghavi, A.; Muraleetharan, K.K. Analysis of laterally loaded pile groups in improved soft clay. Int. J. Geomech 2016, 17, 04016098. [Google Scholar] [CrossRef]
- Park, J.-S.; Park, D.; Yoo, J.-K. Vertical bearing capacity of bucket foundations in sand. Ocean Eng. 2016, 121, 453–461. [Google Scholar] [CrossRef]
- Borja, R.I.; Amies, A.P. Multiaxial cyclic plasticity model for clays. Electron. J. Geotech. Eng. 1994, 120, 1051–1070. [Google Scholar] [CrossRef]
- Zhang, W.; Esmaeilzadeh Seylabi, E.; Taciroglu, E. Validation of a three-dimensional constitutive model for nonlinear site response and soil-structure interaction analyses using centrifuge test data. IJNAMG 2017, 41, 1828–1847. [Google Scholar] [CrossRef]
- Adeel, M.B.; Aaqib, M.; Park, D. Simulation of pile foundations in granular soil subjected to lateral loading using beam-on-nonlinear-winkler-foundation and nonlinear finite element models. Ocean Eng. in press.
- Hatanaka, M.; Uchida, A. Empirical correlation between penetration resistance and internal friction angle of sandy soils. Soils Found. 1996, 36, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.S.; Whitman, R.V. Overburden correction factors for SPT in sand. Electron. J. Geotech. Eng. 1986, 112, 373–377. [Google Scholar] [CrossRef]
- Kwak, D.Y.; Brandenberg, S.J.; Mikami, A.; Stewart, J.P. Prediction equations for estimating shear-wave velocity from combined geotechnical and geomorphic indexes based on Japanese data set. Seismol. Soc. 2015, 105, 1919–1930. [Google Scholar] [CrossRef]
- Rollins, K.M.; Olsen, K.G.; Jensen, D.H.; Garrett, B.H.; Olsen, R.J.; Egbert, J.J. Pile spacing effects on lateral pile group behavior: Analysis. J. Geotech. Geoenviron. 2006, 132, 1272–1283. [Google Scholar] [CrossRef]
Reference | Soil Type | φ (°) | Test Type | Pile Layout | Pile Type | D (cm) | S/D | Proposed p-Multipliers for Rows | Group Effect Parameter | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | |||||||||
Brown et al. [17] | Sand | 38.5 | Full-Scale | 3 × 3 | Steel Pipe | 27.3 | 3 | 0.8 | 0.4 | 0.3 | - | - | - | - | 0.5 |
Morrison and Reese [35] | Sand | 38.5 | Full-Scale | 3 × 3 | Steel Pipe | 27.3 | 3 | 0.8 | 0.4 | 0.3 | - | - | - | - | 0.5 |
McVay et al. [19] | Sand | 30 | Centrifuge | 3 × 3 | Steel Pipe | 43 | 5 | 1 | 0.85 | 0.7 | - | - | - | - | 0.85 |
Sand | 33 | Centrifuge | 3 × 3 | Steel Pipe | 43 | 5 | 1 | 0.85 | 0.7 | - | - | - | - | 0.85 | |
Sand | 30 | Centrifuge | 3 × 3 | Steel Pipe | 43 | 3 | 0.65 | 0.45 | 0.35 | - | - | - | - | 0.48 | |
Sand | 33 | Centrifuge | 3 × 3 | Steel Pipe | 43 | 3 | 0.8 | 0.4 | 0.3 | - | - | - | - | 0.5 | |
Ruesta and Townsend [22] | Sand | 32 | Full-Scale | 4 × 4 | Square Concrete | 76 | 3 | 0.8 | 0.7 | 0.3 | 0.3 | - | - | - | 0.52 |
Walsh [27] | Sand | 40 | Full-Scale | 3 × 5 | Steel pipe | 32.4 | 3.92 | 1 | 0.5 | 0.35 | 0.3 | 0.4 | - | - | 0.51 |
Rollins et al. [25] | Sand | 38 | Full-Scale | 3 × 3 | Steel pipe | 32.4 | 3.3 | 0.8 | 0.4 | 0.4 | - | - | - | - | 0.53 |
Christensen [36] | Sand | 38 | Full-Scale | 3 × 3 | Steel pipe | 32.4 | 5.65 | 1 | 0.7 | 0.65 | - | - | - | - | 0.78 |
Reference | Soil Type | φ (°) | Test Type | Pile Layout | Pile Type | D (cm) | S/D | Proposed p-Multipliers for Rows | Group Effect Parameter | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st Leading | 2nd Trailing | 3rd Trailing | 4th Trailing | 5th Trailing | 6th Trailing | 7th Trailing | |||||||||
McVay et al. [24] | Sand | 33 | Centrifuge | 3 × 3 | Square Steel | 42.9 | 3 | 0.8 | 0.4 | 0.3 | - | - | - | - | 0.5 |
Sand | 33 | Centrifuge | 3 × 4 | Square Steel | 42.9 | 3 | 0.8 | 0.4 | 0.3 | 0.3 | 0.45 | ||||
Sand | 33 | Centrifuge | 3 × 5 | Square Steel | 42.9 | 3 | 0.8 | 0.4 | 0.3 | 0.2 | 0.3 | - | 0.4 | ||
Sand | 33 | Centrifuge | 3 × 6 | Square Steel | 42.9 | 3 | 0.8 | 0.4 | 0.3 | 0.2 | 0.2 | 0.3 | 0.37 | ||
Sand | 33 | Centrifuge | 3 × 7 | Square Steel | 42.9 | 3 | 0.8 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 | 0.34 |
Reference | Soil Type | Pile Head Condition | S/D | Pile Configuration | p-Multipliers for Rows | Group Effect Parameter | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | ||||||
Albusoda et al. [32] | Sand | Fixed | 3 | 2 × 2 | 0.81 | 0.5 | - | - | - | - | - | 0.655 |
6 | 2 × 2 | 0.83 | 0.69 | - | - | - | - | - | 0.76 | |||
3 | 5 piles | 0.71 | 0.6 | 0.51 | - | - | - | - | 0.655 | |||
6 | 5 piles | 0.9 | 0.73 | 0.75 | - | - | - | - | 0.815 | |||
Abu-Farsakh et al. [30] | Clay | Fixed | 4.4 | 3 × 4 | 0.56 | 0.39 | 0.41 | 0.53 | - | - | - | 0.47 |
Taghavi and Muraleetharan [37] | Stiff Clay | Fixed | 3 | 2 × 2 | 0.89 | 0.6 | - | - | - | - | - | 0.745 |
7 | 2 × 2 | 1 | 1 | - | - | - | - | - | 1 | |||
Soft clay | Fixed | 3 | 2 × 2 | 0.84 | 0.43 | - | - | - | - | - | 0.635 | |
7 | 2 × 2 | 1 | 1 | - | - | - | - | - | 1 | |||
Fayyazi [14] | Sand φ = 30° | Free | 3 | 3 × 3 | - | 0.54 | ||||||
4 × 4 | - | 0.43 | ||||||||||
5 × 5 | - | 0.39 | ||||||||||
6 × 6 | - | 0.35 | ||||||||||
4 | 3 × 3 | - | 0.66 | |||||||||
4 × 4 | - | 0.56 | ||||||||||
5 × 5 | - | 0.53 | ||||||||||
6 × 6 | - | 0.49 | ||||||||||
5 | 3 × 3 | - | 0.8 | |||||||||
4 × 4 | - | 0.7 | ||||||||||
5 × 5 | - | 0.67 | ||||||||||
6 × 6 | - | 0.62 | ||||||||||
6 | 3 × 3 | - | 0.89 | |||||||||
4 × 4 | - | 0.83 | ||||||||||
5 × 5 | - | 0.79 | ||||||||||
6 × 6 | - | 0.77 | ||||||||||
Fixed | 3 | 3 × 3 | - | 0.47 | ||||||||
4 × 4 | - | 0.39 | ||||||||||
5 × 5 | - | 0.31 | ||||||||||
6 × 6 | - | 0.29 | ||||||||||
4 | 3 × 3 | - | 0.52 | |||||||||
4 × 4 | - | 0.44 | ||||||||||
5 × 5 | - | 0.41 | ||||||||||
6 × 6 | - | 0.36 | ||||||||||
5 | 3 × 3 | - | 0.59 | |||||||||
4 × 4 | - | 0.53 | ||||||||||
5 × 5 | - | 0.49 | ||||||||||
6 × 6 | - | 0.46 | ||||||||||
6 | 3 × 3 | - | 0.67 | |||||||||
4 × 4 | - | 0.63 | ||||||||||
5 × 5 | - | 0.58 | ||||||||||
6 × 6 | - | 0.57 |
Parameters | Value |
---|---|
Outer diameter (m) | 0.3 |
Thickness (m) | 0.0095 |
Moment of inertia (m4) | 0.000398 |
Modulus of elasticity of reference steel pipe pile, E (GPa) | 200 |
Adjusted modulus of elasticity, E (GPa) | 46 |
Rows | Free-Head Condition | |||||
φ = 30° | φ = 35° | φ = 40° | ||||
a | b | a | b | a | b | |
Leading row | 0.55 | 0.34 | 0.57 | 0.27 | 0.58 | 0.23 |
1st Trailing row | 0.22 | 0.80 | 0.17 | 0.89 | 0.14 | 0.99 |
2nd Trailing row | 0.25 | 0.62 | 0.19 | 0.77 | 0.16 | 0.80 |
Rows | Fixed-Head Condition | |||||
φ = 30° | φ = 35° | φ = 40° | ||||
a | b | a | b | a | b | |
Leading row | 0.54 | 0.31 | 0.47 | 0.36 | 0.43 | 0.34 |
1st Trailing row | 0.23 | 0.54 | 0.18 | 0.62 | 0.16 | 0.60 |
2nd Trailing row | 0.20 | 0.44 | 0.16 | 0.51 | 0.16 | 0.43 |
Pile Spacing | p-Multiplier | |||
---|---|---|---|---|
Leading Row | 1st Trailing Row | 2nd Trailing Row and Higher | Group Effect Parameter | |
3D | 0.8 | 0.4 | 0.3 | 0.5 |
5D | 1 | 0.85 | 0.7 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeel, M.B.; Jan, M.A.; Aaqib, M.; Park, D. Development of Simulation Based p-Multipliers for Laterally Loaded Pile Groups in Granular Soil Using 3D Nonlinear Finite Element Model. Appl. Sci. 2021, 11, 26. https://doi.org/10.3390/app11010026
Adeel MB, Jan MA, Aaqib M, Park D. Development of Simulation Based p-Multipliers for Laterally Loaded Pile Groups in Granular Soil Using 3D Nonlinear Finite Element Model. Applied Sciences. 2021; 11(1):26. https://doi.org/10.3390/app11010026
Chicago/Turabian StyleAdeel, Muhammad Bilal, Muhammad Asad Jan, Muhammad Aaqib, and Duhee Park. 2021. "Development of Simulation Based p-Multipliers for Laterally Loaded Pile Groups in Granular Soil Using 3D Nonlinear Finite Element Model" Applied Sciences 11, no. 1: 26. https://doi.org/10.3390/app11010026
APA StyleAdeel, M. B., Jan, M. A., Aaqib, M., & Park, D. (2021). Development of Simulation Based p-Multipliers for Laterally Loaded Pile Groups in Granular Soil Using 3D Nonlinear Finite Element Model. Applied Sciences, 11(1), 26. https://doi.org/10.3390/app11010026