Natural and Anthropogenic Variations in the Large Shifting Dune in the Corrubedo Natural Park, NW Iberian Peninsula (1956–2017)
Abstract
:1. Introduction
2. Environmental Setting
3. Materials and Methods
4. Results
4.1. Pathway Analysis
4.2. Variations in the Dune Front between 1956 and 2017
4.3. Variations in Vegetation Coverage
4.4. Variations in Elevation Since 2001
5. Discussion
5.1. Installation of a Walway over the Mobile Dune
5.2. Historical Variations in Sedimentary Systems
5.3. The Importance of Coastal Management in the Future
6. Conclusions
- The mobile dune is progressively advancing towards the NE, especially in its middle section, while there is a decrease in maximum elevation and, especially, in the area occupied by the upper part.
- The decrease in elevation of the sedimentary sector is generalized: 83% of the surface experienced noticeable variations and elevation only increased in the progradation zone of the mobile dune.
- Anthropogenic influence is very important in the Corrubedo Natural Park, especially activities such as sand mining during the past century. Pathways have a great importance in this sector, although their length has decreased since 2002.
- The analyzed sector showed an important increase in vegetation coverage, especially since the 2000s. This fact is related with the greater presence of vegetation in sedimentary systems studied by several authors and in different regions.
- Visitors and introduced infrastructures have caused major impacts in the Corrubedo ecosystems in the last decades.
- It is necessary to monitor this system in detail to understand its current dynamics and to allow for a more efficient management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pye, K. Early post-depositional modification of aeolian dune sands. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1983; Volume 38, pp. 197–221. ISBN 0070-4571. [Google Scholar]
- Paskoff, R. Les dunes du littoral. Recherche (Paris 1970) 1989, 212, 888–895. [Google Scholar]
- Martínez, M.L.; Psuty, N.P.; Lubke, R.A. A perspective on coastal dunes. In Coastal Dunes; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–10. [Google Scholar]
- Hesp, P.A.; Walker, I. Coastal dunes. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 328–355. [Google Scholar]
- Ritchie, W. The evolution of coastal sand dunes. Scott. Geogr. Mag. 1972, 88, 19–35. [Google Scholar] [CrossRef]
- Arbogast, A.F.; Hansen, E.C.; Van Oort, M.D. Reconstructing the geomorphic evolution of large coastal dunes along the southeastern shore of Lake Michigan. Geomorphology 2002, 46, 241–255. [Google Scholar] [CrossRef]
- Ojeda, J.; Vallejo, I.; Malvarez, G.C. Morphometric evolution of the active dunes system of the Doñana National Park, Southern Spain (1977–1999). J. Coast. Res. 2005, 49, 40–45. [Google Scholar]
- Pardo-Pascual, J.E.; García-Asenjo, L.; Palomar-Vázquez, J.; Garrigues-Talens, P. New methods and tools to analyze beach-dune system evolution using a Real-Time Kinematic Global Positioning System and Geographic Information Systems. J. Coast. Res. 2005, 49, 34–39. [Google Scholar]
- Fernandez, G.B.; Pereira, T.G.; da Rocha, T.B. Coastal dunes along Rio de Janeiro coast: Evolution and management. J. Coast. Res. 2009, 56, 307–311. [Google Scholar]
- Mathew, S.; Davidson-Arnott, R.G.D.; Ollerhead, J. Evolution of a beach–dune system following a catastrophic storm overwash event: Greenwich Dunes, Prince Edward Island, 1936–2005. Can. J. Earth Sci. 2010, 47, 273–290. [Google Scholar] [CrossRef]
- Bossard, V.; Lerma, A.N. Geomorphologic characteristics and evolution of managed dunes on the South West Coast of France. Geomorphology 2020, 367, 107312. [Google Scholar] [CrossRef]
- Molina, R.; Manno, G.; Lo Re, C.; Anfuso, G. Dune Systems’ Characterization and Evolution in the Andalusia Mediterranean Coast (Spain). Water 2020, 12, 2094. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Jackson, N.L. Distribution of surface pebbles with changes in wave energy on a sandy estuarine beach. J. Sediment. Petrol. 1993, 63, 1152–1159. [Google Scholar] [CrossRef]
- Paskoff, R. Typologie géomorphologique des milieux dunaires européens. Biodiversité Etprotection Dunaire Ates Du Colloq. Bordx. Paris 1997, 198–219. [Google Scholar]
- Cooper, J.A.G.; Alonso, I. Natural and anthropic coasts: Challenges for coastal management in Spain. J. Coast. Res. 2006, 48, 1–7. [Google Scholar]
- Ciccarelli, D.; Pinna, M.S.; Alquini, F.; Cogoni, D.; Ruocco, M.; Bacchetta, G.; Sarti, G.; Fenu, G. Development of a coastal dune vulnerability index for Mediterranean ecosystems: A useful tool for coastal managers? Estuar. Coast. Shelf Sci. 2017, 187, 84–95. [Google Scholar] [CrossRef]
- Pagán, J.I.; Aragonés, L.; Tenza-Abril, A.J.; Pallarés, P. The influence of anthropic actions on the evolution of an urban beach: Case study of Marineta Cassiana beach, Spain. Sci. Total Environ. 2016, 559, 242–255. [Google Scholar] [CrossRef]
- Pagán, J.I.; López, I.; Aragonés, L.; Garcia-Barba, J. The effects of the anthropic actions on the sandy beaches of Guardamar del Segura, Spain. Sci. Total Environ. 2017, 601–602, 1364–1377. [Google Scholar] [CrossRef] [Green Version]
- Robin, N.; Billy, J.; Castelle, B.; Hesp, P.; Laporte-Fauret, Q.; Lerma, A.N.; Marieu, V.; Rosebery, D.; Bujan, S.; Destribats, B.; et al. Beach-dune Recovery from the Extreme 2013–2014 Storms Erosion at Truc Vert Beach, Southwest France: New Insights from Ground-penetrating Radar. J. Coast. Res. 2020, 95, 588–592. [Google Scholar] [CrossRef]
- Ponte Lira, C.; Silva, A.N.; Taborda, R.; De Andrade, C.F. Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: An integrated approach. Earth Syst. Sci. Data 2016, 8, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Taddia, Y.; Corbau, C.; Zambello, E.; Pellegrinelli, A. UAVs for structure-from-motion coastal monitoring: A case study to assess the evolution of embryo dunes over a two-year time frame in the po river delta, Italy. Sensors 2019, 19, 1717. [Google Scholar] [CrossRef] [Green Version]
- Guisado-Pintado, E.; Jackson, D.W.T.; Rogers, D. 3D mapping efficacy of a drone and terrestrial laser scanner over a temperate beach-dune zone. Geomorphology 2019, 328, 157–172. [Google Scholar] [CrossRef]
- Kankara, R.S.; Selvan, S.C.; Markose, V.J.; Rajan, B.; Arockiaraj, S. Estimation of long and short term shoreline changes along Andhra Pradesh coast using remote sensing and GIS techniques. Procedia Eng. 2015, 116, 855–862. [Google Scholar] [CrossRef] [Green Version]
- POLGalicia Plan de Ordenación do Litoral de Galicia; Consellaría de Medio Ambiente, Territorio e Infraestruturas: Santiago de Compostela, Spain, 2010.
- Fraga-Santiago, P.; Gómez-Pazo, A.; Pérez-Alberti, A.; Montero, P.; Otero Pérez, X.L. Trends in the Recent Evolution of Coastal Lagoons and Lakes in Galicia (NW Iberian Peninsula). J. Mar. Sci. Eng. 2019, 7, 272. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Pazo, A.; Perez-Alberti, A.; Otero Pérez, X.L. Recent Evolution (1956–2017) of Rodas Beach on the Cíes Islands, Galicia, NW Spain. J. Mar. Sci. Eng. 2019, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Pazo, A.; Pérez-Alberti, A.; Trenhaile, A. Recording inter-annual changes on a boulder beach in Galicia, NW Spain using an unmanned aerial vehicle. Earth Surf. Process. Landf. 2019, 44, 1004–1014. [Google Scholar] [CrossRef]
- Trenhaile, A.S.; Perez-Alberti, A.; Martínez-Cortizas, A.; Costa-Casais, M.; Blanco-Chao, R. Rock coast inheritance: An example from Galicia, northwestern Spain. Earth Surf. Process. Landf. 1999, 24, 605–621. [Google Scholar] [CrossRef]
- Horacio, J.; Muñoz-Narciso, E.; Trenhaile, A.S.; Pérez-Alberti, A. Remote sensing monitoring of a coastal-valley earthflow in northwestern Galicia, Spain. Catena 2019, 178, 276–287. [Google Scholar] [CrossRef]
- Feal-Pérez, A.; Blanco-Chao, R.; Ferro-Vázquez, C.; Martínez-Cortizas, A.; Costa-Casais, M. Late-Holocene storm imprint in a coastal sedimentary sequence (Northwest Iberian coast). Holocene 2014, 24, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Vázquez Paz, M. Geomorfología costera del sector Aguiño-Corrubedo; Universidade de Santiago de Compostela: Santiago de Compostela, Spain, 1998. [Google Scholar]
- Delgado Blanco, F.J. Aplicación da Análise Métrica ás Formas do Relevo; Universidade de Santiago de Compostela: Santiago de Compostela, Spain, 2003. [Google Scholar]
- Pérez-Alberti, A.; Vázquez Paz, M. Caracterización y dinámica de sistemas dunares costeros de Galicia. In Las Dunas de España; Scoiedad Española de Geomorfología: Zaragoza, Spain, 2011; pp. 161–185. [Google Scholar]
- Rey, D.; Rubio, B.; Bernabeu, A.M.; Vilas, F. Formation, exposure, and evolution of a high-latitude beachrock in the intertidal zone of the Corrubedo complex (Ria de Arousa, Galicia, NW Spain). Sediment. Geol. 2004, 169, 93–105. [Google Scholar] [CrossRef]
- González-Villanueva, S.; Costas, S.; Pérez-Arluecea, M.; Alejo, I.; Rial, F. Evolución del sector dunar sur del complejo de Corrubedo. Geogaceta 2011, 50, 177–180. [Google Scholar]
- Vilas, F.; Sopeña, A.; Rey, L.; Ramos, A.; Nombela, M.A.; Arche, A. The Corrubedo beach-lagoon complex, Galicia, Spain: Dynamics, sediments and recent evolution of a mesotidal coastal embayment. Mar. Geol. 1991, 97, 391–404. [Google Scholar] [CrossRef]
- Instituto Geográfico Nacional (IGN). 2020. Available online: https://www.centrodedescargas.cnig.es/ (accessed on 10 November 2020).
- Meteogalicia. 2020. Available online: https://www.meteogalicia.gal/ (accessed on 10 November 2020).
- Puertos del Estado. 2020. Available online: http://www.puertos.es/es-es (accessed on 8 September 2020).
- Margalef, R. Oscilaciones del clima postglacial del noroeste de España registradas en los sedimentos de la ría de Vigo. Zephyrus 1956, II, 5–9. [Google Scholar]
- Meur-Férec, C. Géomorphologie, Protection et Gestion Des Dunes de Bretagne Septentrionale: Éléments de Comparaison Avec D’autres Régions de la Manche Occidentale: Cotentin, Devon et Cornwall (RU). Ph.D. Thesis, Université de Bretagne Occidentale, Brest, France, 1993. [Google Scholar]
- Vázquez Paz, M.; Pérez-Alberti, A. Análisis dinámico y medioambiental de un espacio protegido en la costa atlántica (Parque Natural de Corrubedo, A Coruña). Xeográfica Rev. Xeogr. Territ. Medio Ambient. 2002, 2, 155–178. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org/ (accessed on 7 September 2020).
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; US Geological Survey: Reston, VA, USA, 2018.
- Sytnik, O.; Del Río, L.; Greggio, N.; Bonetti, J. Historical shoreline trend analysis and drivers of coastal change along the Ravenna coast, NE Adriatic. Environ. Earth Sci. 2018, 77, 779. [Google Scholar] [CrossRef]
- Brooks, S.M.; Spencer, T.; Mcivor, A.; Möller, I. Reconstructing and understanding the impacts of storms and surges, southern North Sea. Earth Surf. Process. Landf. 2016, 41, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Otero, X.L.; Macías, F. Estudio para la sostenibilidad de la laguna de Baldaio y su entorno (A Coruña). In Litoral, Ordenación y Modelos de Futuro: IV Congreso de Ingeniería Civil, Territorio y Medio Ambiente; Dirección General de Costas; Ministerio de Medio Ambiente: Madrid, Spain, 2010. [Google Scholar]
- Jackson, D.W.T.; Costas, S.; González-Villanueva, R.; Cooper, A. A global ‘greening’ of coastal dunes: An integrated consequence of climate change? Glob. Planet. Chang. 2019, 182, 103026. [Google Scholar] [CrossRef]
- Bodere, J.C.; Hallegouet, B. Le cordon de Treffiagat (Finistere Sud): Les consequences d’une explotation abusive des sables dunaire. In Proceedings of the Les dunes Littorales et Leur Aménagement, Paris, France, 3 February 1990; pp. 45–56. [Google Scholar]
- Roig-Munar, F.X. Microerosión inducida por los usuarios de las playas. El caso de Menorca (Islas Baleares). Investig. Geogr. 2007, 43, 161–167. [Google Scholar]
- Costas, S.; Alejo, I.; Alcántara-Carrió, J. Human Influence on the Evolution of Islas Cíes Sand Barrier (NW Spain). In The Changing Coast; Eurocoast/EUCC: Porto, Portugal, 2002; pp. 283–287. [Google Scholar]
- Junoy, J.; Castellanos, C.; Viéitez, J.M.; Riera, R. Seven years of macroinfauna monitoring at Ladeira beach (Corrubedo Bay, NW Spain) after the Prestige oil spill. Oceanologia 2013, 55, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Fitton, J.M.; Hansom, J.D.; Rennie, A.F. A method for modelling coastal erosion risk: The example of Scotland. Nat. Hazards 2018, 91, 931–961. [Google Scholar] [CrossRef] [Green Version]
- Kovac, M.; Hladnik, D.; Kutnar, L. Biodiversity in (the Natura 2000) forest habitats is not static: Its conservation calls for an active management approach. J. Nat. Conserv. 2018, 43, 250–260. [Google Scholar] [CrossRef]
- Vanden Borre, J.; Paelinckx, D.; Mücher, C.A.; Kooistra, L.; Haest, B.; De Blust, G.; Schmidt, A.M. Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Conserv. 2011, 19, 116–125. [Google Scholar] [CrossRef]
- Pickering, M.D.; Horsburgh, K.J.; Blundell, J.R.; Hirschi, J.J.M.; Nicholls, R.J.; Verlaan, M.; Wells, N.C. The impact of future sea-level rise on the global tides. Cont. Shelf Res. 2017, 142, 50–68. [Google Scholar] [CrossRef] [Green Version]
- Le Cozannet, G.; Bulteau, T.; Castelle, B.; Ranasinghe, R.; Wöppelmann, G.; Rohmer, J.; Bernon, N.; Idier, D.; Louisor, J.; Salas-y-Mélia, D. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Pazo, A.; Pérez-Alberti, A. Vulnerability of the Galician coast to marine storms in the context of global change. Sémata Cienc. Sociais Hum. 2017, 29, 117–142. [Google Scholar]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Green, D.R.; Hagon, J.J.; Gómez, C.; Gregory, B.J. Using Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling: Examples From the Coastal Zone. In Coastal Management, Global Challenges and Innovations; Academic Press: London, UK, 2019. [Google Scholar] [CrossRef]
- Harley, M.D.; Kinsela, M.A.; Sánchez-García, E.; Vos, K. Shoreline change mapping using crowd-sourced smartphone images. Coast. Eng. 2019, 150, 175–189. [Google Scholar] [CrossRef]
Code | Date | Scale | Program |
---|---|---|---|
- | 1956 | 1/32,000 | American Flight |
- | 1983 | 1/30,000 | National Flight |
- | 1989 | 1/5000 | Coastal Flight |
P1 | 08/01/2002 | 1/30,000 | SIGPAC 1 |
P2 | 09/21/2004 | 1/30,000 | PNOA 2 |
P3 | 08/05/2008 | 1/30,000 | PNOA 2 |
P4 | 07/30/2010 | 1/20,000 | PNOA 2 |
P5 | 07/10/2014 | 1/20,000 | PNOA 2 |
P6 | 06/17/2017 | 1/20,000 | PNOA 2 |
Code | Date | Type | Source |
---|---|---|---|
T1 | 02/20/2001 | Topographic survey | Own data |
T2 | 07/07/2008 | LiDAR | Own data |
T3 | 04/07/2010 | LiDAR | IGN |
T4 | 22/07/2015 | LiDAR | IGN |
Date | Length (m) |
---|---|
1956 | 1312 |
1983 | 8560 |
1989 | 11,132 |
2002 | 11,201 |
2004 | 9920 |
2008 | 7917 |
2010 | 7536 |
2014 | 5817 |
2017 | 4986 |
Date | Surface (ha) |
---|---|
1956 | 33.0 |
1983 | 67.0 |
1989 | 66.2 |
2002 | 84.9 |
2004 | 91.4 |
2008 | 92.9 |
2010 | 89.7 |
2014 | 88.1 |
2017 | 93.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Alberti, A.; Gómez-Pazo, A.; Otero, X.L. Natural and Anthropogenic Variations in the Large Shifting Dune in the Corrubedo Natural Park, NW Iberian Peninsula (1956–2017). Appl. Sci. 2021, 11, 34. https://doi.org/10.3390/app11010034
Pérez-Alberti A, Gómez-Pazo A, Otero XL. Natural and Anthropogenic Variations in the Large Shifting Dune in the Corrubedo Natural Park, NW Iberian Peninsula (1956–2017). Applied Sciences. 2021; 11(1):34. https://doi.org/10.3390/app11010034
Chicago/Turabian StylePérez-Alberti, Augusto, Alejandro Gómez-Pazo, and X. L. Otero. 2021. "Natural and Anthropogenic Variations in the Large Shifting Dune in the Corrubedo Natural Park, NW Iberian Peninsula (1956–2017)" Applied Sciences 11, no. 1: 34. https://doi.org/10.3390/app11010034
APA StylePérez-Alberti, A., Gómez-Pazo, A., & Otero, X. L. (2021). Natural and Anthropogenic Variations in the Large Shifting Dune in the Corrubedo Natural Park, NW Iberian Peninsula (1956–2017). Applied Sciences, 11(1), 34. https://doi.org/10.3390/app11010034