Evaluating GAN-Based Image Augmentation for Threat Detection in Large-Scale Xray Security Images
Abstract
:1. Introduction
2. Related Works
3. The Imbalanced Dataset
4. Image Augmentation
4.1. Image Transformation
4.2. Image Generation
4.3. Image Translation
4.4. Image Synthesis
5. Experiment Results and Discussions
5.1. Evaluation Metrics
5.2. Experiment Setup
5.3. Experiment Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zentai, G. X-ray imaging for homeland security. IEEE Int. Workshop Imaging Syst. Tech. 2008, 3, 13. [Google Scholar] [CrossRef]
- Mery, D. Computer Vision for X-ray Testing; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–12. [Google Scholar]
- Akcay, S.; Kundegorski, M.E.; Willcocks, C.G.; Breckon, T.P. Using Deep Convolutional Neural Network Architectures for Object Classification and Detection Within X-ray Baggage Security Imagery. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2203–2215. [Google Scholar] [CrossRef] [Green Version]
- Mery, D.; Svec, E.; Arias, M. Object Recognition in X-ray Testing Using Adaptive Sparse Representations. J. Nondestruct. Eval. 2016, 35, 1–9. [Google Scholar] [CrossRef]
- Mery, D.; Riffo, V. Automated Detection of Threat Objects Using Adapted Implicit Shape Model. IEEE Trans. Syst. ManCybern. Syst. 2016, 46, 472–482. [Google Scholar]
- Akcay, S.; Kundegorski, M.E.; Devereux, M.; Breckon, T.P. Transfer Learning Using Convolutional Neural Networks for Object Classification within X-ray Baggage Imagery. In Proceedings of the IEEE International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016. [Google Scholar]
- Gaus, Y.F.A.; Bhowmik, N.; Akcay, S.; Breckon, T. Evaluating the Transferability and Adversarial Discrimination of Convolutional Neural Networks for Threat Object Detection and Classification within X-ray. In Proceedings of the IEEE International Conference on Machine Learning and Applications, Boca Raton, FL, USA, 16–19 December 2019. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference for Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Huang, G.; Liu, Z.; von der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Hättenschwiler, N.; Sterchi, Y.; Mendes, M.; Schwaninger, A. Automation in airport security X-ray screening of cabin baggage: Examining benefits and possible implementations of automated explosives detection. Appl. Ergon. 2018, 72, 58–68. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale heirarchal image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Doll´ar, P.; Zitnick, C.L. Microsoft COCO: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.; Kolesnikov, A.; et al. The Open Images Dataset V4. Int. J. Comput. Vis. 2020, 128, 1956–1981. [Google Scholar] [CrossRef] [Green Version]
- Mery, D.; Riffo, V.; Zscherpel, U.; Mondragón, G.; Lillo, I.; Zuccar, I.; Lobel, H.; Carrasco, M. GDXray: The Database of X-ray Images for Nondestructive Testing. J. Nondestruct. Eval. 2015, 34, 1–12. [Google Scholar] [CrossRef]
- Caldwell, M.; Griffin, L.D. Limits on transfer learning from photographic image data to X-ray threat detection. J. X-ray Sci. Technol. 2019, 27, 1007–1020. [Google Scholar] [CrossRef]
- Miao, C.; Xie, L.; Wan, F.; Su, C.; Liu, H.; Jiao, J.; Ye, Q. SIXray: A Large-scale Security Inspection X-ray Benchmark for Prohibited Item Discovery in Overlapping Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Dawar, N.; Ostadabbas, S.; Kehtarnavaz, N. Data Augmentation in Deep Learning-Based Fusion of Depth and Inertial Sensing for Action Recognition. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Pham, T.D. Geostatistical Simulation of Medical Images for Data Augmentation in Deep Learning. IEEE Access 2019, 7, 68752–68763. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, K.; Pan, M.; Wang, M.; Song, Z. An Augmentation Strategy for Medical Image Processing Based on Statistical Shape Model and 3D Thin Plate Spline for Deep Learning. IEEE Access 2019, 7, 133111–133121. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. arXiv 2014, arXiv:1406.2661v1. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Dumagpi, J.K.; Jung, W.-Y.; Jeong, Y.-J. A New GAN-Based Anomaly Detection (GBAD) Approach for Multi-Threat Object Classification on Large-Scale X-ray Security Images. IEICE Trans. Inf. Syst. 2020, 454–458. [Google Scholar] [CrossRef] [Green Version]
- Donahue, J.; Krähenbühl, P.; Darrell, T. Adversarial Feature Learning. arXiv 2017, arXiv:1605.09782v7. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Z.; Zhang, H.; Shi, Y. Data Augmentation for X-ray Prohibited Item Images Using Generative Adversarial Networks. IEEE Access 2019, 7, 28894–28902. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Zhang, H.; Yang, J.; Zhao, Z. Data Augmentation of X-ray Images in Baggage Inspection Based on Generative Adversarial Networks. IEEE Access 2020, 8, 86536–86544. [Google Scholar] [CrossRef]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. arXiv 2018, arXiv:1805.08318v2. [Google Scholar]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv 2017, arXiv:1703.10593v7. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. arXiv 2015, arXiv:1512.02325. [Google Scholar]
- Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Lucic, M.; Kurach, K.; Michalski, M.; Gelly, S.; Bousquet, O. Are GANs Created Equal? A Large-Scale Study. arXiv 2017, arXiv:1711.10337. [Google Scholar]
- Dumagpi, J.K.; Jung, W.-Y.; Jeong, Y.-J. KNN-Based Automatic Cropping for Improved Threat Object Recognition in X-ray Security Images. J. IKEEE 2019, 23, 1134–1139. [Google Scholar]
- Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classification (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- Dolla’r, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian Detection: An Evaluation of the State of the Art. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 743–761. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. arXiv 2015, arXiv:1512.04150. [Google Scholar]
Gun | Knife | Wrench | Pliers | Scissors |
---|---|---|---|---|
109 | 118 | 103 | 111 | 169 |
Gun | Knife | Wrench | Pliers | Scissors |
---|---|---|---|---|
92 | 106 | 86 | 62 | 130 |
Approach | Gun | Knife | Wrench | Pliers | Scissors | Mean |
---|---|---|---|---|---|---|
Base | 81 | 48 | 48 | 60 | 40 | 55.4 |
Base + Transf | 83 | 55 | 53 | 66 | 48 | 61.0 |
Transl | 83 | 52 | 49 | 62 | 59 | 61.0 |
Gen | 83 | 61 | 49 | 62 | 47 | 60.4 |
Gen + Transl | 84 | 60 | 50 | 64 | 49 | 61.4 |
Transl + Transf | 83 | 64 | 52 | 66 | 60 | 65.0 |
Gen + Transf | 84 | 65 | 57 | 67 | 57 | 66.0 |
Gen + Transl + Transf | 88 | 65 | 57 | 67 | 59 | 67.2 |
Approach | Gun | Knife | Wrench | Pliers | Scissors | Mean |
---|---|---|---|---|---|---|
Base | 67 | 21 | 22 | 31 | 9 | 30.0 |
Base + Transf | 74 | 36 | 24 | 35 | 16 | 37.0 |
Transl | 78 | 38 | 22 | 31 | 16 | 37.0 |
Gen | 77 | 44 | 22 | 32 | 13 | 37.6 |
Gen + Transl | 78 | 41 | 22 | 33 | 15 | 37.8 |
Transl + Transf | 81 | 47 | 27 | 39 | 23 | 43.4 |
Gen + Transf | 82 | 53 | 29 | 39 | 21 | 44.8 |
Gen + Transl + Transf | 84 | 49 | 28 | 39 | 21 | 44.2 |
Approach | Gun | Knife | Wrench | Pliers | Scissors | Mean |
---|---|---|---|---|---|---|
Base | 50 | 11 | 9 | 10 | 4 | 16.8 |
Base + Transf | 67 | 23 | 14 | 15 | 10 | 25.8 |
Transl | 67 | 31 | 13 | 14 | 10 | 27.0 |
Gen | 72 | 40 | 14 | 12 | 9 | 29.4 |
Gen + Transl | 70 | 31 | 12 | 12 | 11 | 27.2 |
Transl + Transf | 76 | 36 | 16 | 14 | 17 | 31.8 |
Gen + Transf | 77 | 44 | 17 | 15 | 17 | 34.0 |
Gen + Transl + Transf | 79 | 42 | 16 | 15 | 14 | 33.2 |
Approach | Gun | Knife | Wrench | Pliers | Scissors | Mean |
---|---|---|---|---|---|---|
Base | 31 | 68 | 71 | 61 | 75 | 61.2 |
Base + Transf | 28 | 57 | 68 | 53 | 67 | 54.6 |
Transl | 23 | 59 | 71 | 58 | 66 | 55.4 |
Gen | 23 | 55 | 71 | 59 | 72 | 56.0 |
Gen + Transl | 21 | 55 | 72 | 56 | 69 | 54.6 |
Transl + Transf | 19 | 47 | 68 | 54 | 59 | 49.4 |
Gen + Transf | 19 | 45 | 64 | 53 | 63 | 48.8 |
Gen + Transl + Transf | 15 | 49 | 64 | 53 | 62 | 48.6 |
Approach | Gun | Knife | Wrench | Pliers | Scissors | Mean |
---|---|---|---|---|---|---|
Base | 49 | 84 | 85 | 80 | 84 | 76.4 |
Base + Transf | 41 | 76 | 83 | 77 | 81 | 71.6 |
Transl | 34 | 77 | 85 | 80 | 84 | 72.0 |
Gen | 34 | 73 | 85 | 80 | 87 | 71.8 |
Gen + Transl | 34 | 75 | 84 | 79 | 85 | 71.4 |
Transl + Transf | 27 | 71 | 85 | 77 | 82 | 68.4 |
Gen + Transf | 24 | 65 | 83 | 77 | 84 | 66.6 |
Gen + Transl + Transf | 22 | 67 | 82 | 77 | 82 | 66.0 |
Approach | Gun | Knife | Wrench | Pliers | Scissors | Mean |
---|---|---|---|---|---|---|
Base | 64 | 89 | 87 | 91 | 84 | 83.0 |
Base + Transf | 49 | 84 | 87 | 88 | 83 | 78.2 |
Transl | 51 | 82 | 88 | 90 | 85 | 79.2 |
Gen | 44 | 76 | 89 | 91 | 76 | 75.2 |
Gen + Transl | 46 | 83 | 88 | 90 | 86 | 78.6 |
Transl + Transf | 40 | 79 | 87 | 89 | 83 | 75.6 |
Gen + Transf | 34 | 74 | 86 | 89 | 81 | 72.8 |
Gen + Transl + Transf | 34 | 74 | 88 | 88 | 84 | 73.6 |
Approach | Gun | Knife | Wrench | Pliers | Scissors | Mean |
---|---|---|---|---|---|---|
ResNet50 [8] | 64 | 57 | 50 | 69 | 17 | 51.4 |
ResNet50+CHR [17] | 69 | 59 | 54 | 77 | 16 | 54.9 |
Faster-RCNN [24] | 86 | 72 | 68 | 77 | 79 | 76.4 |
Faster-RCNN+AUG 1 | 86 | 74 | 73 | 79 | 78 | 78.0 |
Approach | Gun | Knife | Wrench | Pliers | Scissors | Mean |
---|---|---|---|---|---|---|
ResNet50 [8] | 48 | 53 | 28 | 40 | 2 | 34.1 |
ResNet50+CHR [17] | 58 | 49 | 41 | 50 | 15 | 42.7 |
Faster-RCNN [24] | 86 | 72 | 68 | 77 | 79 | 76.4 |
Faster-RCNN+AUG 1 | 86 | 74 | 73 | 79 | 78 | 78.0 |
Approach | Gun | Knife | Wrench | Pliers | Scissors | Mean |
---|---|---|---|---|---|---|
ResNet50 [8] | 42 | 49 | 2 | 20 | 3 | 26.7 |
ResNet50+CHR [17] | 61 | 37 | 22 | 21 | 14 | 31.0 |
Faster-RCNN [24] | 82 | 63 | 71 | 48 | 80 | 68.8 |
Faster-RCNN+AUG 1 | 87 | 62 | 68 | 60 | 79 | 71.2 |
Approach | SIXray10/100 | SIXray1000 |
---|---|---|
Base | 94.5 | 91.2 |
Base + Transf | 96.6 | 89.3 |
Transl | 94.6 | 90.7 |
Gen | 93.7 | 86.9 |
Gen + Transl | 95.0 | 91.1 |
Transl + Transf | 92.8 | 92.2 |
Gen + Transf | 92.8 | 91.0 |
Gen + Transl + Transf | 94.4 | 90.9 |
Approach | SIXray10 | SIXray100 | SIXray1000 |
---|---|---|---|
Base | 26.3 | 25.8 | 29.8 |
Base + Transf | 26.9 | 26.6 | 21.0 |
Transl | 12.9 | 12.6 | 9.7 |
Gen | 10.2 | 10.5 | 5.7 |
Gen + Transl | 12.5 | 12.5 | 10.0 |
Transl + Transf | 6.6 | 6.6 | 7.8 |
Gen + Transf | 5.9 | 5.9 | 7.7 |
Gen + Transl + Transf | 7.8 | 7.7 | 6.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumagpi, J.K.; Jeong, Y.-J. Evaluating GAN-Based Image Augmentation for Threat Detection in Large-Scale Xray Security Images. Appl. Sci. 2021, 11, 36. https://doi.org/10.3390/app11010036
Dumagpi JK, Jeong Y-J. Evaluating GAN-Based Image Augmentation for Threat Detection in Large-Scale Xray Security Images. Applied Sciences. 2021; 11(1):36. https://doi.org/10.3390/app11010036
Chicago/Turabian StyleDumagpi, Joanna Kazzandra, and Yong-Jin Jeong. 2021. "Evaluating GAN-Based Image Augmentation for Threat Detection in Large-Scale Xray Security Images" Applied Sciences 11, no. 1: 36. https://doi.org/10.3390/app11010036
APA StyleDumagpi, J. K., & Jeong, Y. -J. (2021). Evaluating GAN-Based Image Augmentation for Threat Detection in Large-Scale Xray Security Images. Applied Sciences, 11(1), 36. https://doi.org/10.3390/app11010036