Mechanical and Thermal Properties for Uranium and U–6Nb Alloy from First-Principles Theory
Abstract
:1. Introduction
2. Computational Methods
3. Results
3.1. Elastic Constants
3.2. Lattice Dynamics
3.3. Thermal Expansion
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wills, J.M.; Eriksson, O. Crystal structure stabilities and electronic structure for the light actinides, Th, Pa, and U. Phys. Rev. B 1992, 45, 13879–13890. [Google Scholar] [CrossRef] [PubMed]
- Holden, A.N. Physical Metallurgy of Uranium; Addison-Wesley Publishing Co.: Reading, MA, USA, 1958. [Google Scholar]
- Vandermeer, R.A. Phase transformations in uranium +14 at.% niobium alloy. Acta Metall. 1980, 28, 383–393. [Google Scholar] [CrossRef]
- Vandermeer, R.A.; Ogle, J.C.; Northcutt, W.G. A phenomenological study of the shape memory effect in polycrystalline uranium-niobium alloys. Metall. Trans. A 1981, 12, 733–741. [Google Scholar] [CrossRef]
- Lillard, J.A.; Hanrahan, R.J., Jr. Corrosion of uranium and uranium alloys. In Corrosion: Materials; Cramer, S.D., Covino, B.S., Eds.; ASM International: Materials Park, OH, USA, 2005; Volume 13B, pp. 370–384. [Google Scholar] [CrossRef]
- Koike, J.; Kassner, M.E.; Tate, R.E.; Rosen, R.S. The Nb-U (Niobium-Uranium) system. J. Phase Equilib. 1998, 19, 253–260. [Google Scholar] [CrossRef]
- Field, R.D.; Thoma, D.J.; Dunn, P.S.; Brown, D.W.; Cady, C.M. Martensitic structures and deformation twinning in the U-Nb shape-memory alloys. Philos. Mag. A 2001, 81, 1691–1724. [Google Scholar] [CrossRef]
- Hackenberg, R.E.; Brown, D.W.; Clarke, A.J.; Dauelsberg, L.B.; Field, R.D.; Hults, W.L.; Kelly, A.M.; Lopez, M.F.; Teter, D.F.; Thoma, D.J.; et al. U–Nb Aging Final Report; Report No. LA-14327; Los Alamos National Laboratory: Washington, DC, USA, 2007.
- Liu, X.J.; Li, Z.S.; Wang, J.; Wang, C.P. Thermodynamic modeling of the U–Mn and U–Nb systems. J. Nucl. Mater. 2008, 380, 99–104. [Google Scholar] [CrossRef]
- Duong, T.C.; Hackenberg, R.E.; Landa, A.; Honarmandi, P.; Talapatra, A.; Volz, H.M.; Llobet, A.; Smith, A.I.; King, G.; Bajaj, S.; et al. Revisiting thermodynamics and kinetic diffusivities of uranium–niobium with Bayesian uncertainty analysis. Calphad 2016, 55, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.C.; Hackenberg, R.E.; Attari, V.; Landa, A.; Turchi, P.E.; Arróyave, R. Investigation of the discontinuous precipitation of U-Nb alloys via thermodynamic analysis and phase-field modeling. Comput. Mater. Sci. 2020, 175, 109573. [Google Scholar] [CrossRef]
- Volz, H.; Hackenberg, R.; Kelly, A.; Hults, W.; Lawson, A.; Field, R.; Teter, D.; Thoma, D. X-ray diffraction analyses of aged U–Nb alloys. J. Alloys Compd. 2007, 444–445, 217–225. [Google Scholar] [CrossRef]
- Clarke, A.; Field, R.; Hackenberg, R.; Thoma, D.; Brown, D.; Teter, D.; Miller, M.; Russell, K.; Edmonds, D.; Beverini, G. Low temperature age hardening in U–13 at.% Nb: An assessment of chemical redistribution mechanisms. J. Nucl. Mater. 2009, 393, 282–291. [Google Scholar] [CrossRef]
- Hackenberg, R.; Volz, H.M.; Papin, P.A.; Kelly, A.M.; Forsyth, R.T.; Tucker, T.J.; Clarke, K. Kinetics of lamellar decomposition reactions in U-Nb alloys. Solid State Phenom. 2011, 172–174, 555–560. [Google Scholar] [CrossRef]
- Eckelmeyer, K.H.; Romig, A.D.; Weirick, L.J. The effect of quench rate on the microstructure, mechanical properties, and corrosion behavior of U-6 wt pct Nb. Metall. Trans. A 1984, 15, 1319–1330. [Google Scholar] [CrossRef]
- Djurič, B. Decomposition of gamma phase in a uranium-9.5 wt% niobium alloy. J. Nucl. Mater. 1972, 44, 207–214. [Google Scholar] [CrossRef]
- Zhang, J.; Brown, D.W.; Clausen, B.; Vogel, S.C.; Hackenberg, R.E. In situ time-resolved phase evolution and phase transformations in U-6 wt pct Nb. Metall. Mater. Trans. A 2019, 50, 2619–2628. [Google Scholar] [CrossRef]
- Brown, D.W.; Bourke, M.A.M.; Stout, M.G.; Dunn, P.S.; Field, R.D.; Thoma, M.J. Uniaxial tensile deformation of uranium 6 wt pct niobium: A neutron diffraction study of deformation twinning. Metall. Trans. A 2001, 32, 2219–2228. [Google Scholar] [CrossRef]
- Brown, D.W.; Bourke, M.A.M.; Field, R.D.; Hults, W.L.; Teter, D.F.; Thoma, D.J.; Vogel, S.C. Neutron diffraction study of the deformation mechanism of the uranium-7 wt.% niobium shape memory alloy. Mater. Sci. Eng. A 2006, 421, 15–21. [Google Scholar] [CrossRef]
- Tupper, C.N.; Brown, D.W.; Field, R.D.; Sisneros, T.A.; Clausen, B. Large strain deformation in uranium 6 wt pct niobium. Metall. Mater. Trans. A 2012, 43, 520–530. [Google Scholar] [CrossRef]
- Brown, D.W.; Bourke, M.A.M.; Clarke, A.J.; Field, R.D.; Hackenberg, R.D.; Hults, W.L.; Thoma, D.J. The effect of low-temperature aging on the microstructure and deformation of uranium 6 wt% niobium: An in-situ neutron diffraction study. J. Nucl. Mater. 2016, 481, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.S.; Brown, D.W.; Clausen, B.; Elmer, J.W. The influence of impurities on the crystal structure and mechanical properties of additive manufactured U-14 at.% Nb. Scr. Mater. 2017, 130, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Vogel, S.C.; Brown, D.; Clausen, B.; Hackenberg, R. Equation of state, phase stability, and phase transformations of uranium-6 wt.% niobium under high pressure and temperatures. J. Appl. Phys. 2018, 123, 175103. [Google Scholar] [CrossRef]
- Zhang, J.; Hackenberg, R.; Vogel, S.C.; Brown, D. Equation of state and phase evolution of U-7.7Nb with implications for the understanding of dynamic behaviour of U-Nb alloys. Appl. Phys. Lett. 2019, 114, 221901. [Google Scholar] [CrossRef]
- Govindjee, S.; Kasper, E.P. A shape memory alloy model for uranium-niobium accounting for plasticity. J. Intell. Mater. Syst. Struct. 1997, 8, 815–823. [Google Scholar] [CrossRef]
- Cahn, J. The kinetics of cellular segregation reactions. Acta Metall. 1959, 7, 18–28. [Google Scholar] [CrossRef]
- Addessio, F.L.; Zuo, Q.H.; Mason, T.A. Model for high-strain-rate deformation of uranium-niobium alloys. J. Appl. Phys. 2003, 93, 9644–9654. [Google Scholar] [CrossRef] [Green Version]
- Zubelewicz, A.; Addessio, F.L.; Cady, C.M. A constitutive model for uranium-niobium alloy. J. Appl. Phys. 2006, 100, 013523. [Google Scholar] [CrossRef]
- Zhang, J.; Hackenberg, R.E.; Watkins, E.B.; Vogel, S.C.; Brown, D.W. The lattice parameter—Composition relationship of the body centered cubic uranium-niobium alloys. J. Nucl. Mater. 2020, 542, 152493. [Google Scholar] [CrossRef]
- Xiang, X.; Huang, H.; Hsiung, L.M. Quantum mechanical calculations of uranium phases and niobium defects in γ-uranium. J. Nucl. Mater. 2008, 375, 113–119. [Google Scholar] [CrossRef]
- Lu, C.; Ni, S.; Chen, W.; Zhang, C.; Wang, Y. Influence of electron energy loss spectroscopy of the niobium-substituted uranium atom: A density functional theory study. Nucl. Sci. Technol. 2008, 19, 365–369. [Google Scholar] [CrossRef]
- Wang, J.-T.; Yu, W.-L.; Wang, T.; Wang, Y.-L.; Gao, Y.-L. First-principles study on thermodynamic defect and crystal structure of U-12.5 at.% Nb alloy. Int. J. Heat Technol. 2015, 33, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Landa, A.; Söderlind, P.; Wu, A. Phase stability in U-6Nb alloy doped with Ti from the first principles theory. Appl. Sci. 2020, 10, 3417. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Söderlind, P.; Gonis, A. Assessing a solids-biased density-gradient functional for actinide metals. Phys. Rev. B 2010, 82, 033102. [Google Scholar] [CrossRef]
- Söderlind, P.; Landa, A.; Sadigh, B. Density-functional theory for plutonium. Adv. Phys. 2019, 68, 1–47. [Google Scholar] [CrossRef]
- Eriksson, O.; Brooks, M.S.S.; Johansson, B. Orbital polarization in narrow-band systems: Application to volume collapses in light lanthanides. Phys. Rev. B 1990, 41, 7311–7314. [Google Scholar] [CrossRef]
- Sadigh, B.; Kutepov, A.; Landa, A.; Söderlind, P. Assessing relativistic effects and electron correlation in the actinide metals Th to Pu. Appl. Sci. 2019, 9, 5020. [Google Scholar] [CrossRef] [Green Version]
- Wills, J.M.; Eriksson, O.; Andersson, P.; Delin, A.; Grechnyev, O.; Alouani, M. Full-Potential Electronic Structure Method; Springer Science and Business Media LLC: Berlin, Germany, 2010. [Google Scholar]
- Söderlind, P. First-principles elastic and structural properties of uranium metal. Phys. Rev. B 2002, 66, 085113. [Google Scholar] [CrossRef]
- Söderlind, P.; Klepeis, J.E. First-principles elastic properties of α-Pu. Phys. Rev. B 2009, 79, 104110. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in material science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Söderlind, P.; Grabowski, B.; Yang, L.; Landa, A.; Björkman, T.; Souvatzis, P.; Eriksson, O. High-temperature phonon stabilization of γ-uranium from relativistic first-principles theory. Phys. Rev. B 2012, 85, 060301. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, L.T. Thermal expansion of alpha-uranium single crystals. J. Nucl. Mater. 1961, 3, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, L.T.; Barrett, C.S. Thermal expansion of alpha uranium. J. Nucl. Mater. 1966, 18, 55–59. [Google Scholar] [CrossRef]
- Söderlind, P.; Nordström, L.; Yongming, L.; Johansson, B. Relativistic effects on the thermal expansion of the actinide elements. Phys. Rev. B 1990, 42, 4544–4552. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, J. Lattice dynamics of α uranium. Phys. Rev. B 2008, 77, 024113. [Google Scholar] [CrossRef]
- Taylor, C.D. Evaluation of first-principles techniques for obtaining materials parameters of α-uranium and the (001) α-uranium surface. Phys. Rev. B 2008, 77, 094119. [Google Scholar] [CrossRef]
- Li, J.H.; Ren, Q.B.; Lu, C.H.; Lu, L.; Dai, Y.; Liu, B.X. Structure, formation energies and elastic constants of uranium metal investigated by first principles calculations. J. Alloy Compd. 2012, 516, 139–143. [Google Scholar] [CrossRef]
- Beeler, B.; Deo, C.; Baskes, M.; Okuniewski, M. First principles calculations of the structure and elastic constants of α, β, and γ uranium. J. Nucl. Mater. 2013, 433, 143–151. [Google Scholar] [CrossRef]
- Fisher, E.S.; McSkimin, H.J. Adiabatic elastic moduli of single-crystal alpha uranium. J. Appl. Phys. 1958, 29, 1473–1484. [Google Scholar] [CrossRef]
- Söderlind, P.; Yang, L.H. Phonon density of states for α-plutonium from density-functional theory. Sci. Rep. 2019, 9, 18682-1–18682-7. [Google Scholar] [CrossRef]
- Söderlind, P.; Zhou, F.; Landa, A.; Klepeis, J.E. Phonon and magnetic structure in δ-plutonium from density-functional theory. Sci. Rep. 2015, 5, 15958-1–15958-6. [Google Scholar] [CrossRef] [PubMed]
- Manley, M.E.; Fultz, B.; McQueeney, R.J.; Brown, C.M.; Hults, W.L.; Smith, J.L.; Thoma, D.J.; Osborn, R.; Robertson, J.L. Large harmonic softening of the phonon density of states of uranium. Phys. Rev. Lett. 2001, 86, 3076–3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crummett, W.P.; Smith, H.G.; Nicklow, R.M.; Wakabayashi, N. Lattice dynamics of α-uranium. Phys. Rev. B 1979, 19, 6028–6037. [Google Scholar] [CrossRef]
- Wallace, D.C. Electronic and phonon properties of six crystalline phases of Pu metal. Phys. Rev. B 1998, 58, 15433–15439. [Google Scholar] [CrossRef]
- Lashley, J.C.; Lang, B.E.; Boerio-Goates, J.; Woodfield, B.F.; Schmiedeshoff, G.M.; Gay, E.C.; McPheeters, C.C.; Thoma, D.J.; Hults, W.L.; Cooley, J.C.; et al. Low-temperature specific heat and critical magnetic field of α-uranium single crystals. Phys. Rev. B 2001, 63, 224510. [Google Scholar] [CrossRef]
- Barrett, C.S.; Mueller, M.H.; Hitterman, R.L. Crystal structure variations in alpha uranium at low temperatures. Phys. Rev. 1963, 129, 625–629. [Google Scholar] [CrossRef]
Elastic Moduli | α”-U | α”-U14Nb2 | α-U | α-U-Experiment | α-U14Nb2 |
---|---|---|---|---|---|
c11 | 2.91 | 2.50 | 2.88 | 2.15 (2.10) | 2.66 |
c22 | 1.89 | 1.66 | 2.37 | 1.99 (2.15) | 2.21 |
c33 | 3.63 | 3.19 | 3.18 | 2.67 (2.97) | 2.73 |
c44 | 1.40 | 1.12 | 1.43 | 1.24 (1.45) | 1.16 |
c55 | 1.08 | 0.58 | 1.06 | 0.734 (0.945) | 0.56 |
c66 | 0.96 | 0.68 | 0.96 | 0.743 (0.871) | 0.72 |
c12 | 0.465 | 0.585 | 0.445 | 0.465 | 0.64 |
c13 | 0.010 | 0.265 | 0.085 | 0.218 | 0.39 |
c23 | 1.46 | 1.315 | 1.10 | 1.08 | 1.16 |
c15 | 0.46 | 0.45 | |||
c25 | 0.475 | 0.395 | |||
c35 | 0.435 | 0.365 | |||
c46 | 0.015 | 0.015 | |||
GV | 1.121 | 0.822 | 1.143 | 0.88 (1.017) | 0.849 |
BV | 1.367 | 1.298 | 1.299 | 1.149 (1.194) | 1.33 |
BV/GV | 1.219 | 1.579 | 1.136 | 1.305 (1.174) | 1.567 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Söderlind, P.; Yang, L.H.; Landa, A.; Wu, A. Mechanical and Thermal Properties for Uranium and U–6Nb Alloy from First-Principles Theory. Appl. Sci. 2021, 11, 5643. https://doi.org/10.3390/app11125643
Söderlind P, Yang LH, Landa A, Wu A. Mechanical and Thermal Properties for Uranium and U–6Nb Alloy from First-Principles Theory. Applied Sciences. 2021; 11(12):5643. https://doi.org/10.3390/app11125643
Chicago/Turabian StyleSöderlind, Per, Lin H. Yang, Alexander Landa, and Amanda Wu. 2021. "Mechanical and Thermal Properties for Uranium and U–6Nb Alloy from First-Principles Theory" Applied Sciences 11, no. 12: 5643. https://doi.org/10.3390/app11125643
APA StyleSöderlind, P., Yang, L. H., Landa, A., & Wu, A. (2021). Mechanical and Thermal Properties for Uranium and U–6Nb Alloy from First-Principles Theory. Applied Sciences, 11(12), 5643. https://doi.org/10.3390/app11125643