The Role of Elasticity in the Vortex Formation in Polymeric Flow around a Sharp Bend
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Governing Equations
2.2. Computational Methodology
2.2.1. Numerical Solver
2.2.2. Simulation Parameters
- The Weissenberg number Wi = λ·U/H, where λ is the relaxation time of the polymer, U is the characteristic velocity, and H is the characteristic length scale of the geometry (channel height). The Weissenberg number is a ratio of the polymeric timescale to a convective timescale, akin to an elastic to viscous forces ratio in the context of this work.
- The Reynolds number Re = ρ·U·H/η0, where ρ and η0 are, respectively, the density and the zero-shear rate viscosity of the solution. The Reynolds number is a measure of the ratio of inertia to viscous forces.
- The elasticity number, a derived parameter, characterizes the balance of elastic and inertial forces in the fluid and is defined as El = Wi/Re.
- The solvent viscosity ratio β = ηs/ηo, where ηs is the Newtonian solvent viscosity and ηo is the zero-shear rate viscosity of the solution.
2.2.3. Computational Domain
2.2.4. Meshing
3. Results
3.1. Newtonian Flow
3.2. Polymer Flow
3.2.1. Inertial Vortices
3.2.2. Elastic Vortices
4. Discussion
5. Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Matsumoto, D.; Fukudome, K.; Wada, H. Two-dimensional fluid dynamics in a sharply bent channel: Laminar flow, separation bubble, and vortex dynamics. Phys. Fluids 2016, 28, 103602. [Google Scholar] [CrossRef]
- Hayes, R.E.; Nandakumar, K.; Nasr-El-Din, H. Steady laminar flow in a 90 degree planar branch. Comput. Fluids 1989, 17, 537–553. [Google Scholar] [CrossRef]
- Renardy, M. Current issues in non-Newtonian flows: A mathematical perspective. J. Non-Newton. Fluid Mech. 2000, 90, 243–259. [Google Scholar] [CrossRef]
- Zhou, J.; Papautsky, I. Viscoelastic microfluidics: Progress and challenges. Microsyst. Nanoeng. 2020, 6, 113. [Google Scholar] [CrossRef]
- Gulati, S.; Liepmann, D.; Muller, S. Elastic secondary flows of semidilute DNA solutions in abrupt 90° microbends. Phys. Rev. 2008, 78, 036314. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hong, S.O.; Shimab, T.S.; Kim, J.M. Inertio-elastic flow instabilities in a 90° bent microchannel. Soft Matter 2017, 13, 5656. [Google Scholar] [CrossRef]
- Hadri, F.; Guillou, S. Drag reduction by surfactant in closed turbulent flow. Int. J. Eng. Sci. Technol. 2010, 2, 6876–6879. [Google Scholar]
- Munekata, M.; Matsuzaki, K.; Ohba, H. A Study on Viscoelastic Fluid Flow in a Square-Section 90-Degrees Bend. J. Therm. Sci. 2003, 12, 337–343. [Google Scholar] [CrossRef]
- Keunings, R. On the Peterlin approximation for finitely extensible dumbbells. J. Non-Newton. Fluid Mech. 1997, 68, 85–100. [Google Scholar] [CrossRef]
- Bird, R.B.; Curtiss, C.F.; Armstrong, R.C.; Hassager, O. Elastic Dumbbell Models. In Dynamics of Polymeric Liquids, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1987; Volume 2. [Google Scholar]
- Morrison, F.A. Newtonian Fluid Mechanics. In Understanding Rheology; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Bird, R.B.; Armstrong, R.C.; Hassager, O. Differential Constitutive Equations. In Dynamic of Polymeric Liquids, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1987; Volume 1. [Google Scholar]
- RheoTOOL User Guide. Available online: https://devhub.io/repos/fppimenta-rheoTool (accessed on 20 May 2020).
- Favero, J.L.; Secchi, A.R.; Cardozo, N.S.M.; Jasak, H. Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. J. Non-Newton. Fluid Mech. 2010, 165, 1625–1636. [Google Scholar] [CrossRef]
- Pimenta, F.; Alves, M.A. Stabilization of an open-source finite-volume solver for viscoelastic fluid flows. J. Non-Newton. Fluid Mech. 2017, 239, 85–104. [Google Scholar] [CrossRef]
- Fattala, R.; Kupferman, R. Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newton. Fluid Mech. 2004, 123, 281–285. [Google Scholar] [CrossRef]
- Afonso, A.; Oliveira, P.J.; Pinho, F.T.; Alves, M.A. The log-conformation tensor approach in the finite-volume method framework. J. Non-Newton. Fluid Mech. 2009, 157, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.A.; Oliveira, P.J.; Pinho, F.T. A convergent and universally bounded interpolation scheme for the treatment of advection. Int. J. Num. Methods Fluids 2003, 41, 47–75. [Google Scholar] [CrossRef]
- Kalb, A.; Villasmil, U.; Larry, A.; Cromer, M. Role of chain scission in cross-slot flow of wormlike micellar solutions. Phys. Rev. Fluids 2017, 2, 071301. [Google Scholar] [CrossRef]
- Kalb, A.; Villasmil-Urdaneta, L.A.; Cromer, M. Elastic instability and secondary flow in cross-slot flow of wormlike micellar solutions. J. Non-Newton. Fluid Mech. 2018, 262, 79–91. [Google Scholar] [CrossRef]
- Hwang, M.Y.; Mohammadigoushki, H.; Muller, S.J. Flow of viscoelastic fluids around a sharp microfluidic bend: Role of wormlike micellar structure. Phys. Rev. Fluids 2017, 2, 043303. [Google Scholar] [CrossRef]
- Xiong, R.; Chung, J.N. Effects of miter bend on pressure drop and flow structure in micro-fluidic channels. Int. J. Heat Mass Transf. 2008, 51, 2914–2924. [Google Scholar] [CrossRef]
- Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001. [Google Scholar]
- Fernandes, C.; Araújo, M.; Ferrás, L.L.; Nóbrega, J.M. Improved Both Sides Diffusion (iBSD): A new and straightforward stabilization approach for viscoelastic fluid flows. J. Non-Newton. Fluid Mech. 2017, 249, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Ferrás, L.L.; Afonso, A.M.; Alves, M.A.; Nóbrega, J.M.; Carneiro, O.S.; Pinho, F.T. Slip flows of Newtonian and viscoelastic fluids in a 4:1 contraction. J. Non-Newt. Fluid Mech. 2014, 214, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.A.; Oliveira, P.J.; Pinho, F.T. Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions. J. Non-Newton. Fluid Mech. 2003, 110, 45–75. [Google Scholar] [CrossRef]
- Matsui, T.; Hiramatsu, M.; Hanaki, M. Separation of Low Reynolds Number Flows Around a Corner. Symp. Turbul. Liq. 1975, 3, 283–288. [Google Scholar]
- Poole, R.J.; Lindner, A.; Alves, M.A. Viscoelastic secondary flows in serpentine channels. J. Non-Newton. Fluid Mech. 2013, 201, 10–16. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojcik, B.; LaRuez, J.; Cromer, M.; Villasmil Urdaneta, L.A. The Role of Elasticity in the Vortex Formation in Polymeric Flow around a Sharp Bend. Appl. Sci. 2021, 11, 6588. https://doi.org/10.3390/app11146588
Wojcik B, LaRuez J, Cromer M, Villasmil Urdaneta LA. The Role of Elasticity in the Vortex Formation in Polymeric Flow around a Sharp Bend. Applied Sciences. 2021; 11(14):6588. https://doi.org/10.3390/app11146588
Chicago/Turabian StyleWojcik, Brian, Jason LaRuez, Michael Cromer, and Larry A. Villasmil Urdaneta. 2021. "The Role of Elasticity in the Vortex Formation in Polymeric Flow around a Sharp Bend" Applied Sciences 11, no. 14: 6588. https://doi.org/10.3390/app11146588
APA StyleWojcik, B., LaRuez, J., Cromer, M., & Villasmil Urdaneta, L. A. (2021). The Role of Elasticity in the Vortex Formation in Polymeric Flow around a Sharp Bend. Applied Sciences, 11(14), 6588. https://doi.org/10.3390/app11146588