Basic Chemical Composition and Concentration of Selected Bioactive Compounds in Leaves of Black, Red and White Currant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Basic Chemical Composition
2.2. Extract Preparation
2.3. Total Polyphenols Content and Antioxidant Activity
2.4. Statistical Analysis
3. Results
3.1. Basic Chemical Composition
3.2. Total Phenolic Content and Antioxidant Activity
4. Discussion
4.1. Basic Chemical Composition
4.2. Total Phenolic Content and Antioxidant Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, T.K. Ribes nigrum. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Brennan, R. Currants and Gooseberries. In Temperate Fruit Crop Breeding; Hancock, J.F., Ed.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Evers, D.; Dommes, J. Ascorbic Acid, Phenolic Acid, Flavonoid, and Carotenoid Profiles of Selected Extracts from Ribes nigrum. J. Agric. Food Chem. 2011, 59, 4763–4770. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liimatainen, J.; Allane, A.L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2016, 220, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Krzepiłko, A.; Prażak, R.; Skwaryło-Bednarz, B.; Święciło, A. Buds, leaves, and seeds of blackcurrant—Source of bioactive substances with pro-health properties. Żywność. Nauka. Technologia. Jakość 2018, 2, 24–33. (In Polish) [Google Scholar]
- Mikkonen, T.P.; Määttä, K.R.; Hukkanen, A.T.; Kokko, H.I.; Törrönen, A.R.; Kärenlampi, S.O.; Karjalainen, R.O. Flavonol content varies among black currant cultivars. J. Agric. Food Chem. 2001, 49, 3274–3277. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant capacity, phenolic compounds and minerals content of blackcurrant (Ribes nigrum L.) leaves as influenced by harvesting date and extraction method. Ind. Crop. Prod. 2014, 53, 133–139. [Google Scholar]
- Vagiri, M.; Johansson, E.; Rumpunen, K. Phenolic compounds in black currant leaves–an interaction between the plant and foliar diseases? J. Plant Interac. 2017, 12, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Dobson, G. Leaf lipids of Ribes nigrum: A plant containing 16: 3, α-18: 3, γ-18: 3 and 18: 4 fatty acids. Biochem. Soc. Trans. 2000, 28, 583–586. [Google Scholar] [CrossRef]
- Ferlemi, A.V.; Lamari, F.N. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants 2016, 5, 17. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Gaithesburg, MD, USA, 2006. [Google Scholar]
- Metzger, L.E.; Nielsen, S.S. Nutrition labeling in food analysis. In Food Analysis, 5th ed.; Nielsen, S.S., Ed.; Springer: Cham, Switzerland, 2017; pp. 35–43. [Google Scholar]
- Kajdžanoska, M.; Petreska, J.; Stefova, M. Comparison of Different Extraction Solvent Mixtures for Characterization of Phenolic Compounds in Strawberries. J. Agric. Food Chem. 2011, 59, 5272–5278. [Google Scholar] [CrossRef]
- Rispail, N.; Morris, P.; Webb, K.J. Phenolic Compounds: Extraction and analysis. In Lotus Japonicus Handbook; Márquez, A.J., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 349–354. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68 . [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, F.F.I.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Materska, M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao-Ngoc, P.; Leclercq, L.; Rossi, J.C.; Hertzog, J.; Tixier, A.S.; Chemat, F.; Nasreddine, R.; Al Hamoui Dit Banni, G.; Nehmé, R.; Schmitt-Kopplin, P.; et al. Water-based extraction of bioactive principles from blackcurrant leaves and Chrysanthellum americanum: A Comparative Study. Foods 2020, 9, 1478. [Google Scholar] [CrossRef] [PubMed]
- Tichá, I.; Čatský, J.; Hodáňová, D.; Pospišilivá, J.; Kaše, M.; Šesták, Z. Gas exchange and dry matter accumulation during leaf development. In Photosynthesis during Leaf Development; Tasks for Vegetation Science; Šestăk, Z., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 157–216. [Google Scholar]
- Athokpam, F.D.; Garkoti, S.C.; Borah, N. Periodicity of leaf growth and leaf dry mass changes in the evergreen and deciduous species of Southern Assam, India. Ecol. Res. 2014, 29, 153–165. [Google Scholar] [CrossRef]
- Ruiz del Castillo, M.L.; Dobson, G.; Brennan, R.; Gordon, S. Genotypic variation in fatty acid content of blackcurrant seeds. J. Agric. Food Chem. 2002, 50, 332–335. [Google Scholar] [CrossRef]
- Niskanen, R. Nutritional status in commercial currant fields. Agric. Food Sci. 2002, 11, 301–310. [Google Scholar] [CrossRef]
- Bednarek, W.; Bednarek, H.; Dresler, S. Contents and uptake of phosphorus, potassium and magnesium by cocksfoot grass in relation to meteorological conditions. Acta Agrophysica 2009, 13, 587–600. [Google Scholar]
- Domagała-Świątkiewicz, I.; Kolarski, K. The effect of plant samples collection date on nutrients leaf content of four species of highbush blueberry (Vaccinium corymbosum L.). Rocz. Akad. Rol. Pozn. Ekon. 2007, 41, 297–302. [Google Scholar]
- Rumasz-Rudnicka, E.; Koszański, Z.; Kowalewska, R. Influence of drip irrigation and nitrogen fertilizer on chemical composition of fruits and leaves of raspberries. Acta Agrophysica 2009, 13, 771–779. (In Polish) [Google Scholar]
- Bulletin of the State Hydrological and Meteorological Service (13(215)); ISSN 1730-6124; Institute of Meteorology and Water Management: Warsaw, Poland, 2019.
- Bulletin of the State Hydrological and Meteorological Service (13(202)); ISSN 1730-6124; Institute of Meteorology and Water Management: Warsaw, Poland, 2018.
- Kendir, G.; Köroğlu, A. In vitro antioxidant effect of the leaf and branch extracts of Ribes L. species in Turkey. Int. J. Life Sci. Biotechnol. Pharma Res. 2015, 2, 108. [Google Scholar] [CrossRef] [Green Version]
- Gryszczyńska, B.; Iskra, M.; Gryszczyńska, A.; Budzyń, M. The antioxidant activity of selected berry fruits. Postępy Fitoter. 2011, 4, 265–274. [Google Scholar]
- Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem. 2015, 172, 135–142. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Dvaranauskaite, A.; Labokas, J. Radical scavenging activity and composition of raspberry (Rubus idaeus) leaves from different locations in Lithuania. Fitoterapia 2007, 78, 162–165. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Czaplicki, S. The petioles and leaves of sweet cherry (Prunus avium L.) as a potential source of natural bioactive compounds. Euro. Food Res. Technol. 2018, 244, 1415–1426. [Google Scholar] [CrossRef]
- Cieślik, E.; Gręda, A.; Adamus, W. Contents of polyphenols in fruit and vegetables. Food Chem. 2006, 94, 135–142. [Google Scholar] [CrossRef]
- Ribeiro, D.A.; Camilo, C.J.; de Fátima Alves Nonato, C.; Rodrigues, F.F.G.; Menezes, I.R.A.; Ribeiro-Filho, J.; Xiao, J.; de Almeida Souza, M.M.; da Costa, J.G.M. Influence of seasonal variation on phenolic content and in vitro antioxidant activity of Secondatia floribunda A. DC. (Apocynaceae). Food Chem. 2020, 315, 126277. [Google Scholar] [CrossRef] [PubMed]
- Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus L.) and the anthocyanins. J. Agric. Food Chem. 2003, 51, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Veberic, R.; Stampar, F.; Schmitzer, V.; Cunja, V.; Zupan, A.; Koron, D.; Mikulic Petkovsek, M. Changes in the contents of anthocyanins and other compounds in blackberry fruits due to freezing and long-term frozen storage. J. Agric. Food Chem. 2014, 62, 6926–6935. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, J. Antioxidant properties of plant-based food products. Żywność. Nauka. Technologia. Jakość 2004, 4, 5–28. [Google Scholar]
- Zych, W.; Stafiej, N.; Kucharski, Ł.; Nowak, A.; Klimowicz, A. Comparison of antioxidant activity of extract of blackcurrant (Ribes nigrum L.) and redcurrant (Ribes rubrum L). In Modern Life and Medical Research: Practical Applications; Selected Issues; Universytet im. Adama Mickiewicza: Poznan, Poland, 2019; pp. 108–120. ISBN 978-83-65599-25-4. [Google Scholar]
- Teleszko, M. American cranberry (Vaccinium macrocarpon L.)—Possibility of using it to produce bio-food. Żywność. Nauka. Technologia. Jakość 2011, 6, 132–141. [Google Scholar]
Harvest Date | Sample | Dry Matter [g/100 g] | Protein [g/100 g DM] | Fat [g/100 g DM] | Total Ash [g/100 g DM] | Carbohydrates [g/100 g DM] |
---|---|---|---|---|---|---|
May 2018 | Redcurrant leaves | 33.26 ± 0.21 efg | 15.23 ± 0.30 cd | 4.00 ± 0.08 f | 7.69 ± 0.04 a | 73.08 ± 0.18 k |
Whitecurrant leaves | 32.91 ± 0.41 def | 21.42 ± 0.34 i | 4.03 ± 0.04 f | 8.44 ± 0.11 b | 66.11 ± 0.19 fg | |
Blackcurrant leaves | 32.60 ± 0.06 de | 15.41 ± 0.29 d | 7.75 ± 0.01 m | 11.90 ± 0.03 e | 64.94 ± 0.32 d | |
June/July 2018 | Redcurrant leaves | 38.37 ± 0.23 k | 14.95 ± 0.11 cd | 6.85 ± 0.11 l | 11.75 ± 0.02 de | 66.44 ± 0.02 g |
Whitecurrant leaves | 33.87 ± 0.09 gh | 16.58 ± 0.06 e | 4.03 ± 0.05 f | 13.94 ± 0.04 f | 65.45 ± 0.03 e | |
Blackcurrant leaves | 36.37 ± 0.14 i | 15.51 ± 0.06 d | 6.91 ± 0.05 l | 13.78 ± 0.02 f | 63.80 ± 0.01 c | |
August 2018 | Redcurrant leaves | 41.38 ± 0.07 l | 14.79 ± 0.18 c | 6.10 ± 0.02 k | 11.09 ± 0.10 cd | 68.03 ± 0.27 i |
Whitecurrant leaves | 34.54 ± 0.12 hi | 16.29 ± 0.12 e | 3.65 ± 0.11 de | 16.74 ± 0.04 g | 63.32 ± 0.27 ab | |
Blackcurrant leaves | 30.56 ± 0.16 c | 19.50± 0.32 g | 2.45 ± 0.00 c | 11.89 ± 0.37 e | 66.16 ± 0.05 g | |
May 2019 | Redcurrant leaves | 28.99 ± 0.70 b | 17.90 ± 0.25 f | 1.91 ± 0.10 b | 10.74 ± 0.32 c | 69.45 ± 0.17 j |
Whitecurrant leaves | 28.04 ± 1.14 a | 20.72 ± 0.04 h | 1.70 ± 0.01 a | 11.88 ± 0.32 e | 65.69 ± 0.28 ef | |
Blackcurrant leaves | 32.32 ± 0.52 d | 13.45 ± 0.57 b | 4.34 ± 0.05 g | 16.52 ± 0.75 g | 65.68 ± 0.22 ef | |
June/July 2019 | Redcurrant leaves | 33.75 ± 0.11 fgh | 12.37 ± 0.34 a | 3.76 ± 0.07 e | 16.47 ± 0.67 g | 67.40 ± 0.26 h |
Whitecurrant leaves | 31.33 ± 0.03 c | 13.07 ± 0.23 b | 3.55 ± 0.01 d | 18.36 ± 0.29 g | 65.02 ± 0.06 d | |
Blackcurrant leaves | 33.49 ± 0.24 fg | 12.88 ± 0.18 ab | 5.28 ± 0.15 j | 18.15 ± 0.41 h | 63.68 ± 0.08 bc | |
August 2019 | Redcurrant leaves | 35.01 ± 0.16 i | 12.92 ± 0.25 ab | 4.52 ± 0.06 h | 16.89 ± 0.44 g | 65.67 ± 0.12 ef |
Whitecurrant leaves | 32.24 ± 0.35 d | 13.18 ± 0.05 b | 5.01 ± 0.06 i | 18.58 ± 0.15 h | 63.23 ± 0.04 | |
Blackcurrant leaves | 33.11 ± 0.05 defg | 17.65 ± 0.39 f | 5.19 ± 0.03 j | 9.10 ± 0.02 b | 68.06 ± 0.40 i |
Harvest Date | Sample | Total Polyphenols [mg CGA/100 g DM] | ABTS [µmol Trolox/g DM] | DPPH [µmol Trolox/g DM] | FRAP [µmol Trolox/g DM] |
---|---|---|---|---|---|
May 2018 | Redcurrant leaves | 31 952.06 ± 257.48 n | 4 327.28 ± 68.24 ef | 5 175.42 ± 160.30 e | 9 356.12 ± 73.35 k |
Whitecurrant leaves | 20 365.50 ± 133.75 c | 3 593.43 ± 297.49 d | 5 060.14 ± 35.37 de | 7 389.15 ± 97.19 h | |
Blackcurrant leaves | 22 101.61 ± 170.57 d | 1 800.10 ± 232.49 a | 4 316.47 ± 96.67 c | 4 669.14 ± 54.54 c | |
June/July 2018 | Redcurrant leaves | 23 054.90 ± 137.38 e | 3 031.80 ± 43.69 c | 4 323.85 ± 72.67 c | 8 017.53 ± 71.16 i |
Whitecurrant leaves | 20 105.07 ± 175.78 c | 2 197.94 ± 153.74 ab | 3 002.98 ± 17.43 a | 3 969.21 ± 128.06 b | |
Blackcurrant leaves | 25 616.54 ± 320.22 h | 2 378.48 ± 155.19 b | 7 213.48 ± 120.98 i | 7 248.21 ± 154.92 h | |
August 2018 | Redcurrant leaves | 24 180.49 ± 89.29 f | 4 401.35 ± 42.59 f | 5 492.61 ± 35.42 f | 6 068.05 ± 153.11 f |
Whitecurrant leaves | 17 249.70 ± 66.35 a | 1 884.06 ± 28.14 a | 3 233.58 ± 99.27 a | 3 517.63 ± 85.54 a | |
Blackcurrant leaves | 30 151.01 ± 66.18 m | 4 597.92 ± 54.20 fg | 6 428.35 ± 25.00 h | 7 411.46 ± 92.97 h | |
May 2019 | redcurrant leaves | 29 512.52 ± 177.98 l | 4 246.76 ± 42.45 ef | 5 162.47 ± 52.96 e | 8 862.36 ± 15.21 j |
whitecurrant leaves | 24 304.23 ± 199.70 f | 3 946.17 ± 87.01 de | 4 065.84 ± 35.21 c | 8 763.98 ± 42.91 j | |
blackcurrant leaves | 32 374.29 ± 112.05 o | 6 989.44 ± 81.46 i | 7 877.82 ± 101.60 k | 6 749.45 ± 30.64 g | |
June/July 2019 | Redcurrant leaves | 18 699.40 ± 66.61 b | 4 827.60 ± 202.71 gh | 3 744.63 ± 140.94 b | 5 291.90 ± 56.80 d |
Whitecurrant leaves | 26 005.09 ± 135.54 i | 2 859.15 ± 402.33 c | 5 799.54 ± 17.92 g | 6 628.90 ± 57.79 g | |
Blackcurrant leaves | 27 733.81 ± 197.76 k | 4 918.81 ± 19.97 h | 7 794.50 ± 99.62 j | 5 987.46 ± 53.46 f | |
August 2019 | Redcurrant leaves | 26 734.85 ± 179.40 j | 3 635.08 ± 42.79 d | 6 486.89 ± 480.40 h | 5 590.34 ± 90.2 e |
Whitecurrant leaves | 25 976.21 ± 110.58 i | 5 047.38 ± 52.64 h | 6 269.47 ± 111.90 h | 5 948.26 ± 125.30 f | |
Blackcurrant leaves | 24 917.50 ± 90.24 g | 2 006.18 ± 61.50 ab | 4 820.47 ± 102.28 d | 6 772.73 ± 61.69 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziobroń, M.; Kopeć, A.; Skoczylas, J.; Dziadek, K.; Zawistowski, J. Basic Chemical Composition and Concentration of Selected Bioactive Compounds in Leaves of Black, Red and White Currant. Appl. Sci. 2021, 11, 7638. https://doi.org/10.3390/app11167638
Ziobroń M, Kopeć A, Skoczylas J, Dziadek K, Zawistowski J. Basic Chemical Composition and Concentration of Selected Bioactive Compounds in Leaves of Black, Red and White Currant. Applied Sciences. 2021; 11(16):7638. https://doi.org/10.3390/app11167638
Chicago/Turabian StyleZiobroń, Magdalena, Aneta Kopeć, Joanna Skoczylas, Kinga Dziadek, and Jerzy Zawistowski. 2021. "Basic Chemical Composition and Concentration of Selected Bioactive Compounds in Leaves of Black, Red and White Currant" Applied Sciences 11, no. 16: 7638. https://doi.org/10.3390/app11167638
APA StyleZiobroń, M., Kopeć, A., Skoczylas, J., Dziadek, K., & Zawistowski, J. (2021). Basic Chemical Composition and Concentration of Selected Bioactive Compounds in Leaves of Black, Red and White Currant. Applied Sciences, 11(16), 7638. https://doi.org/10.3390/app11167638