Addition of Bee Products in Diverse Food Sources: Functional and Physicochemical Properties
Abstract
:1. Introduction
2. Dairy Products
2.1. Bacterial Survival
2.2. Nutritional Composition
2.3. Physicochemical Properties
2.4. Antioxidants Content and Antioxidant Properties
2.5. Sensory Evaluation
3. Fruits
4. Enriched Drinks
5. Meat Products
6. Bakery and Related Products
7. Enrichment of Apiary Products
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campos, M.G.R.; Frigerio, C.; Lopes, J.; Bogdanov, S. What is the future of bee-pollen? J. ApiProd. ApiMed. Sci. 2010, 2, 131–144. [Google Scholar] [CrossRef]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex Standard for Honey; Allinorm 1; FAO: Roma, Italy, 2001; pp. 19–26. [Google Scholar]
- Thakur, M.; Nanda, V. Composition and functionality of bee pollen: A review. Trends Food Sci. Technol. 2020, 98, 82–106. [Google Scholar] [CrossRef]
- Kostić, A.; Milinčić, D.D.; Barać, M.B.; Ali Shariati, M.; Tešić, Ž.L.; Pešić, M.B. The Application of Pollen as a Functional Food and Feed Ingredient-The Present and Perspectives. Biomolecules 2020, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komosinska-Vassev, K.; Olczyk, P.; Kazmierczak, J.; Mencner, L.; Olczyk, K. Bee pollen: Chemical composition and therapeutic application. Evid.-Based Complement. Altern. 2015, 2015, 297425. [Google Scholar] [CrossRef] [Green Version]
- Sforcin, J.M. Biological properties and therapeutic applications of propolis. Phyther. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Toreti, V.C.; Sato, H.H.; Park, Y.K.; Pastore, G.M. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid.-Based Complement. Altern. Med. 2013, 2013, 697390. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Czyzewska, U.; Isidorova, A.G.; Bakier, S. Gas chromatographic and mass spectrometric characterization of the organic acids extracted from some preparations containing lyophilized royal jelly. J. Chromatogr. B. 2009, 877, 3776–3780. [Google Scholar] [CrossRef]
- WHO/FAO. Diet, Nutrition and the Prevention of Chronic Diseases. Report of a Joint WHO/FAO Expert Consultation; WHO Technical Report Series; WHO: Geneva, Switzerland, 2003; Available online: http://whqlipdoc.who.int/trs/who_trs_916.pdf (accessed on 14 May 2021).
- Ashwell, M. Concepts of Functional Foods [Internet]; ILSI Europe Concise Monograph Series; ILSI Press: Washington, DC, USA, 2002; 40p. [Google Scholar]
- Ahmed, A.; Anjum, F.; Ur Rehman, S.; Randhawa, M.; Farooq, U. Bioavailability of calcium, iron and zinc fortified whole wheat flour chapatti. Plant Foods Hum. Nutr. 2008, 63, 7–13. [Google Scholar] [CrossRef]
- Bakr, I.A.; Mohamed, T.H.; Tammam, A.A.; El-Gazzar, F.E. Characteristics of bioyoghurt fortified with fennel honey. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 959–970. [Google Scholar]
- Ammar, E.T.M.A.; Ismail, M.M.; Khalil, A.E.-W.E.; Eid, M.Z. Impact of fortification with honey on some properties of bio-yoghurt. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, T.H.; Tammam, A.A.; Bakr, I.A.; El-Gazzar, F.E. Antioxidant, phenolic compounds and antimicrobial activity of yoghurt and bioyoghurt fortified with sedr honey. Pak. J. Food Sci. 2016, 26, 161–172. [Google Scholar]
- Hamad, M.N.F.; Ismail, M.M.; El-Kadi, S.M.L.; Zidan, M.S. Chemical composition, microbial properties and sensory evaluation of bio-yoghurt made from admixture of cow and coconut milk and honey. J. Food Dairy Sci. 2016, 2, 246–260. [Google Scholar] [CrossRef] [Green Version]
- Mercan, E.; Akın, N. Effect of different levels of pine honey addition on physicochemical, microbiological and sensory properties of set-type yoghurt. Int. J. Dairy Technol. 2016, 69, 1–8. [Google Scholar] [CrossRef]
- Rotar, A.M.; Semeniuc, C.; Bunghez, F.; Jimborean, M.; Pop, C. Effect of Different Storage Period on Lactic Acid Bacterias from Goji Yogurt and Goji Yogurt with Honey. Bull. UASVM Food Sci. Technol. 2014, 71, 75–76. [Google Scholar] [CrossRef] [Green Version]
- Machado, T.A.D.G.; de Oliveira, M.E.G.; Campos, M.I.F.; de Assis, P.O.A.; de Souza, E.L.; Madruga, M.S.; Pacheco, M.T.B.; Pintado, M.M.E.; do Egypto, R.D.C.R. Impact of honey on quality characteristics of goat yogurt containing probiotic Lactobacillus acidophilus. LWT-Food Sci. Technol. 2017, 80, 221–229. [Google Scholar] [CrossRef]
- Coskun, F.; Dirican, L.K. Effects of pine honey on the physicochemical, microbiological and sensory properties of probiotic yoghurt. Food Sci. Technol. 2019, 39, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Metry, W.A.; Owayss, A.A. Influence of incorporating honey and royal jelly on the quality of yoghurt during storage. Egypt J. Food Sci. 2009, 37, 115–131. [Google Scholar]
- Kennas, A.; Amellal-Chibane, H.; Kessal, F.; Halladj, F. Effect of pomegranate peel and honey fortification on physicochemical, physical, microbiological and antioxidant properties of yoghurt powder. J. Saudi Soc. Agric. Sci. 2020, 19, 99–108. [Google Scholar] [CrossRef]
- Remenová, Z.; Canigová, M.; Krocko, M.; Ducková, V. Effect of added rape honey on chosen physicochemical and textural properties and antioxidant activity of yogurts during storage. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 802–804. [Google Scholar] [CrossRef]
- Yerlikaya, O. Effect of bee pollen supplement on antimicrobial, chemical, rheological, sensorial properties and probiotic viability of fermented milk beverages. Mljekarstvo 2014, 64, 268–279. [Google Scholar] [CrossRef] [Green Version]
- Abd Elhamid, A.; Elbayoumi, M. Influence of bee pollen on the bioactive behavior, sensory and physicochemical properties of white cheese made from camel and cow milk mixture. J. Food Dairy Sci. 2017, 8, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Karabagias, I.K.; Karabagias, V.K.; Gatzias, I.; Riganakos, K.A. Bio-functional properties of bee pollen: The case of “bee pollen yoghurt”. Coatings 2018, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Thakur, M.; Nanda, V. Process optimization of polyphenol-rich milk powder using bee pollen based on physicochemical and functional properties. J. Food Process. Eng. 2019, 42, 1–12. [Google Scholar] [CrossRef]
- El-Deeb, A. Utilization of propolis extract as a natural preservative in raw milk. J. Food Dairy Sci. 2017, 8, 315–321. [Google Scholar] [CrossRef]
- Santos, M.S.; Estevinho, L.M.; Carvalho, C.A.L.; Morais, J.S.; Conceição, A.L.S.; Paula, V.B.; Magalhães-Guedes, K.; Almeida, R.C.C. Probiotic yogurt with brazilian red propolis: Physicochemical and bioactive properties, stability, and shelf life. J. Food Sci. 2019, 84, 3429–3436. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.S.; Estevinho, L.M.; de Carvalho, C.A.L.; da Silva Conceição, A.L.; de Castro Almeida, R.C. Rheological and sensorial evaluation of yogurt incorporated with red propolis. J. Food Sci. Technol. 2019, 57, 1080–1089. [Google Scholar] [CrossRef] [Green Version]
- Chon, J.-W.; Seo, K.-H.; Oh, H.; Jeong, D.; Song, K.-Y. Chemical and Organoleptic Properties of Some Dairy Products Supplemented with Various Concentration of Propolis: A Preliminary Study. J. Dairy Sci. Biotechnol. 2020, 38, 59–69. [Google Scholar] [CrossRef]
- Atallah, A. The production of bio-yoghurt with probiotic bacteria, royal jelly and bee pollen grains. J. Nutr. Food Sci. 2016, 06, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Atallah, A.A.; Morsy, K.M. Effect of incorporating royal jelly and bee pollen grains on texture and microstructure profile of probiotic yoghurt. J. Food Process. Technol. 2017, 8, 8–11. [Google Scholar] [CrossRef]
- Atallah, A. Amino acids, fatty acids and volatile compounds of yoghurt supplemented with probiotic, royal jelly and pollen grain. Nutr. Food Sci. Int. J. 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Zlatev, Z.; Taneva, I.; Baycheva, S.; Petev, M. A comparative analysis of physico-chemical indicators and sensory characteristics of yogurt with added honey and bee pollen. Bulg. J. Agric. Sci. 2018, 24, 132–144. [Google Scholar]
- Mohammadi, R.; Mortazavian, A.M. Review article: Technological aspects of prebiotics in probiotic fermented milks. Food Rev. Int. 2011, 27, 192–212. [Google Scholar] [CrossRef]
- Akalin, A.S.; Fenderya, S.; Akbulut, N. Viability and activity of bifidobacteria in yoghurt containing fructooligosaccharide during refrigerated storage. Int. J. Food Sci. Technol. 2004, 39, 613–621. [Google Scholar] [CrossRef]
- Kailasapathy, K.; Harmstorf, I.; Phillips, M. Survival of Lactobacillus acidophilus and Bifidobacterium animalis ssp. lactis in stirred fruit yogurts. LWT-Food Sci. Technol. 2008, 41, 1317–1322. [Google Scholar] [CrossRef]
- Collomb, M.; Schmid, A.; Sieber, R.; Wechsler, D.; Ryhänen, E.L. Conjugated linoleic acids in milk fat: Variation and physiological effects. Int. Dairy J. 2006, 16, 1347–1361. [Google Scholar] [CrossRef]
- Won, S.; Li, C.; Kim, J.; Rhee, H. Immunological characterization of honey major protein and its application. Food Chem. 2009, 113, 1334–1338. [Google Scholar] [CrossRef]
- Bueno-Costa, F.M.; Zambiazi, R.C.; Bohmer, B.W.; Chaves, F.C.; Silva WP da Zanusso, J.T.; Dutra, I. Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT-Food Sci. Technol. 2016, 65, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Rashid, A. Thakur ESN. Studies on quality parameters of set yoghurt prepared by the addition of honey. Int. J. Sci. Res. Publ. 2012, 2, 1–10. [Google Scholar]
- Sommano, S.R.; Bhat, F.M.; Wongkeaw, M.; Sriwichai, T.; Sunanta, P.; Chuttong, B.; Burgett, M. Amino Acid Profiling and Chemometric Relations of Black Dwarf Honey and Bee Pollen. Front. Nutr. 2020, 7, 558579. [Google Scholar] [CrossRef]
- Mayda, N.; Özkök, A.; Ecem, N.; Yusuf, B.; Gerçek, C.; Sorkun, K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020. [CrossRef]
- Lomova, N.; Narizhnyi, S.; Snizhko, O. Yoghurt enrichment with natural bee farming products. Ukr Food J. 2014, 3, 415–421. [Google Scholar]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Oliveira Costa, A.C.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Giusti, M.; Wrolstad, R. Acylated anthocyanins from edible sources and their application in food system. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Ciron, C.; Gee, V.; Kelly, A.; Auty, M. Modifying the microstructure of low-fat yoghurt by microfluidisation of milk at different pressures to enhance rheological and sensory properties. Food Chem. 2012, 130, 510–519. [Google Scholar] [CrossRef]
- Mathias, T.R.; Carvalho Junior, I.; Carvalho, C. Rheological characterization of coffee- flavored yogurt with different types of thickener. Alim. Nutr. 2011, 22, 521–529. [Google Scholar]
- Bansal, V.; Premi, M.; Sharma, H.K.; Nanda, V. Compositional, physical, functional attributes and flow characterization of spray-dried skim milk powder enriched with honey. J. Food Meas. Charact. 2017, 11, 1474–1485. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Kivima, E.; Tanilas, K.; Martverk, K.; Rosenvald, S.; Timberg, L.; Laos, K. The Composition, Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Estonian Honeys. Foods 2021, 10, 511. [Google Scholar] [CrossRef] [PubMed]
- Amores-Arrocha, A.; Roldán, A.; Cantizano, A.C.J.; Caro, I.; Palacios, V. Evaluation of the use of multiflora bee pollen on the volatile compounds and sensorial profile of Palomino fino and Riesling white young wines. Food Res. Int. 2018, 105, 197–209. [Google Scholar] [CrossRef]
- Kausar, S.H.; More, V.R. Royal Jelly: Organoleptic Characteristics and Physicochemical Properties. Pharm. Chem. J. 2019, 6, 20–24. [Google Scholar]
- Narbona, E.; García-García, E.; Vázquez-Araújo, L.; Carbolle-Barrachina, Á.A. Volatile composition of functional ‘a la Piedra’ turrón with propolis. Int. J. Food Technol. 2010, 45, 569–577. [Google Scholar] [CrossRef]
- Ali, A.; Chow, W.L.; Zahid, N.; Ong, M.K. Efficacy of propolis and cinnamon oil coating in controlling post-harvest anthracnose and quality of chilli (Capsicum annuum L.) during cold storage. Food Bioprocess. Technol. 2013, 7, 2742–2748. [Google Scholar] [CrossRef]
- Ali, A.; Wei, Y.Z.; Mustafa, M.A. Exploiting propolis as an antimicrobial edible coating to control post-harvest anthracnose of bell pepper. Packag. Technol. Sci. 2014, 28, 173–179. [Google Scholar] [CrossRef]
- Zahid, N.; Ali, A.; Siddiqui, Y.; Maqbool, M. Efficacy of ethanolic extract of propolis in maintaining postharvest quality of dragon fruit during storage. Postharvest Biol. Technol. 2013, 79, 69–72. [Google Scholar] [CrossRef]
- Chitarra, M.; Chitarra, A. Pós-Colheita de Frutas e Hortaliças: Fisiologia e Manuseio, 2nd ed.; UFLA: Lavras, Brazil, 2005; 785p. [Google Scholar]
- Passos, F.R.; Queiroz Mendes, F.; Crivelari da Cunha, M.; Teixeira Pigozzi, M.; Xavier de Carvalho, A.M. Propolis extract in postharvest consevation banana “prata”. Rev. Bras. Frutic. 2016, 38. [Google Scholar] [CrossRef] [Green Version]
- Badawy, I.F.M. Effect of ethanol-extracted propolis on fruit quality and storability of balady oranges during cold storage. Assiut J. Agric. Sci. 2016, 47, 156–166. [Google Scholar] [CrossRef]
- Srinu, D.; Suseela, K. Proximate and mineral composition of amla-papaya jam incorporated with honey. Int. J. Agric. Sci. Res. 2016, 6, 317–328. [Google Scholar] [CrossRef]
- Franke, A.; Cooney, R.; Henning, S.; Custer, L. Bioavailability and antioxidant effects of orange juice components in humans. J. Food Sci. Technol. 2005, 53, 5170–5178. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Wu, Z.; Huang, Z.Y.; Miao, X. Preservation of orange juice using propolis. J. Food Sci. Technol. 2017, 54, 3375–3383. [Google Scholar] [CrossRef]
- Stan, L. Bee pollen as antioxidant ingredient in ready-to-serve citrus juice. Sci. Pap. Ser. D Anim. Sci. 2018, LXI, 312–317. [Google Scholar]
- Solgajová, M.; Ivanišová, E.; Nôžková, J.; Frančáková, H.; Tóth, Ž.; Dráb, Š. Antioxidant activity and polyphenol content of malt beverages enriched with bee pollen. J. Microbiol. Biotechnol. Food Sci. 2014, 3, 281–284. [Google Scholar]
- Ali, F.H.; Kassem, G.M.; Atta-Alla, O.A. Propolis as a natural decontaminant and antioxidant in fresh oriental sausage. Vet. Ital. 2010, 46, 167–172. [Google Scholar]
- Gandemer, G. Dry cured ham quality as related to lipid quality of raw material and lipid changes during processing: A review. Grasas Aceites 2009, 60, 297–307. [Google Scholar] [CrossRef]
- Kročko, M.; Bobko, M.; Bučko, O.; Čanigová, M.; Ducková, V. Sensory quality, colour and oxidative stability of cured cooked ham with propolis extract. Potravin. Slovak J. Food Sci. 2014, 8, 102–106. [Google Scholar] [CrossRef]
- Spinelli, S.; Conte, A.; Lecce, L.; Incoronato, A.L.; Del Nobile, M.A. Microencapsulated propolis to enhance the antioxidant properties of fresh fish burgers. J. Food Process. Eng. 2015, 38, 527–535. [Google Scholar] [CrossRef]
- Gutiérrez-Cortés, C.; Suarez Mahecha, H. Antimicrobial activity of propolis and its effect on the physicochemical and sensoral characteristics in sausages. Vitae Rev. Fac. Química Farm. 2014, 21, 90–96. [Google Scholar]
- Suarez, M.H.; Jiménez, T.Á.; Díaz, M.C. Determination of microbiological and sensory parameters of fish fillets with propolis preserved under refrigeration. Rev. MVZ Cordoba 2014, 19, 4214–4225. [Google Scholar] [CrossRef] [Green Version]
- Kunrath, C.A.; Savoldi, D.C.; Mileski, J.P.F.; Novello, C.R.; Da Trindade Alfaro, A.; Marchi, J.F.; Tonial, I.B. Application and evaluation of propolis, the natural antioxidant in Italian-type salami. Braz. J. Food Technol. 2017, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.; Diedrich, C.; de Moura, C.; Pereira, D.; Almeida, J.F.; da Silva, L.D.; Plata-Oviedo, M.S.V.; Tavares, R.A.W.; Carpes, S.T. Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at −15 °C. LWT-Food Sci. Technol. 2017, 76, 306–313. [Google Scholar] [CrossRef]
- Çoban, Ö.E.; Fadıoğlu, E.E.; Çoban, M.Z. Investigation of some quality characteristics of smoked common carp (Cyprinus carpio) sausages supplemented with propolis extract. Procedia Comput. Sci. 2018, 13, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Turhan, S.; Saricaoglu, F.T.; Mortas, M.; Yazici, F.; Genccelep, H. Evaluation of color, lipid oxidation and microbial quality in meatballs formulated with bee pollen during frozen storage. J. Food Process. Preserv. 2017, 41, 1–8. [Google Scholar] [CrossRef]
- Almeida, J.F.; dos Reis, A.S.; Heldt, L.F.S.; Pereira, D.; Bianchin, M.; de Moura, C.; Plata-Oviedo, M.V.; Haminiuk, C.; Ribeiro, I.S.; Luz, C.F.P.; et al. Lyophilized bee pollen extract: A natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT-Food Sci. Technol. 2017, 76, 299–305. [Google Scholar] [CrossRef]
- Fernanda, L.; Heldt, S.; Pereira, D.; Rodrigues Souza, B.; Almeida-Muradian, L.B.; Carpes, S.T. Fortification of beef burger with the addition of bee pollen from Apis mellifera L. Emir. J. Food Agric. 2019, 31, 895–901. [Google Scholar] [CrossRef]
- Çam, M.; Içyer, N.C.; Erdoǧan, F. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT-Food Sci. Technol. 2014, 55, 117–123. [Google Scholar] [CrossRef]
- Leja, M.; Mareczek, A.; Wyzgolik, G.; Klepacz-Baniak, J.; Czekońska, K. Antioxidative properties of bee pollen in selected plant species. Food Chem. 2007, 100, 237–240. [Google Scholar] [CrossRef]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Avena-Bustillos, R.J.; Olsen, C.; Friedman, M.; Henika, P.R.; Martín-Belloso, O.; Pan, Z.; McHugh, T.H. Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. J. Food Eng. 2007, 81, 634–641. [Google Scholar] [CrossRef]
- Duthoit, F.; Callon, C.; Tessier, L.; Montel, M.-C. Relationships between sensorial characteristics and microbial dynamics in “Registered Designation of Origin” Salers cheese. Int. J. Food Microbiol. 2005, 103, 259–270. [Google Scholar] [CrossRef]
- David, M. Nigeria, No 1 market for US Wheat; Potential for other grains and feeds. USAID Foreign Agric. Serv. Bull. 2006, 21, 1–2. [Google Scholar]
- Naik, R.; Seidner, D.; Adams, D. Nutritional consideration in celiac disease and nonceliac gluten sensitivity. Gastroenterol. Clin. N. Am. 2018, 47, 139–154. [Google Scholar] [CrossRef]
- Collar, C.; Conte, P.; Fadda, C.; Piga, A. Gluten-free dough-making of specialty breads: Significance of blended starches, flours and additives on dough behaviour. Food Sci. Technol. Int. 2015, 21, 523–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghayegh, G.; Ataye Salehi, S. Enrichment of gluten free cookie by quinoa, amaranth and buckwheat flour as semi cereal. Iran. J. Food Sci. Technol. 2017, 14, 47–56. [Google Scholar]
- Turkut, G.; Cakmak, H.; Kumcuoglu, S.; Tavman, S. Effect of quinoa flour on gluten-free bread batter rheology and bread quality. J. Cereal Sci. 2016, 69, 174–181. [Google Scholar] [CrossRef]
- Conte, P.; Del Caro, A.; Urgeghe, P.; Petretto, G.; Montanari, L.; Piga, A.; Fadda, C. Nutritional and aroma improvement of gluten-free bread: Is bee pollen effective? LWT-Food Sci. Technol. 2020, 118, 108711. [Google Scholar] [CrossRef]
- Krystyjan, M.; Gumul, D.; Ziobro, R.; Korus, A. The fortification of biscuits with bee pollen and its effect on physicochemical and antioxidant properties in biscuits. Food Sci. Technol. 2015, 63, 640–646. [Google Scholar] [CrossRef]
- Juhaimi, F.A.L.; Ghafoor, K.; Babiker, E.E.; Özcan, M.M.; Harmankaya, M. Mineral contents of traditional breads enriched with floral honey. Indian J. Tradit. Knowl. 2016, 15, 223–226. [Google Scholar]
- Solgajová, M.; Nozková, J.; Kadáková, M. Quality of durable cookies enriched with rape bee pollen. J. Cent. Eur. Agric. 2014, 15, 24–28. [Google Scholar] [CrossRef]
- Zeiny, A.; Shalaby, A.; Zemzemi, F.; Awad, O. Effect of croissant supplemented with honey and propolis on aspirin-induced stomach ulceration in rats. J Food Dairy Sci. 2015, 6, 177–191. [Google Scholar] [CrossRef]
- Kavanagh, S.; Gunnoo, J.; Marques Passos, T.; Stout, J.C.; White, B. Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef]
- Kedzia, B.; Hołderna-Kedzia, E. Presence of phenolic compounds in bee honey. Phytother. Prog. 2008, 4, 225–232. [Google Scholar]
- Khalil, I.; Moniruzzaman, M.; Boukraâ, L.; Benhanifia, M.; Islam, A.; Islam, N.; Sulaiman, S.A.; Gan, S.H. Physicochemical and Antioxidant Properties of Algerian Honey. Molecules 2012, 17, 11199–11215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilczynska, A. Phenolic content and antioxidant activity of different types of Polish honey-A short report. Pol. J. Food Nutr. Sci. 2010, 60, 309–313. [Google Scholar]
- Socha, R.; Habryka, C.; Juszczak, L. Effect of bee bread additive on content of phenolic compounds and antioxidant activity of honey. Food Sci. Technol. Qual. 2018, 25, 108–119. [Google Scholar] [CrossRef]
- Habryka, C.; Socha, R.; Juszcak, L. The effect of enriching honey with propolis on the antioxidant activity, sensory characteristics, and quality parameters. Molecules 2020, 25, 1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osés, S.M.; Melgosa, L.; Pascual-Maté, A.; Fernández-Muiño, M.A.; Sancho, M.T. Design of a food product composed of honey and propolis. J. Apic. Res. 2016, 54, 461–467. [Google Scholar] [CrossRef]
- Vulić, J.J.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Djilas, S.M.; Tumbas Šaponjac, V.T.; Stajčić, S.M. Polyfloral, linden and acacia honeys with dried cherries after three months of storage—Antioxidant and sensory evaluation. Acta Period. Technol. 2015, 46, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Juszczak, L.; Gałkowska, D.; Ostrowska, M.; Socha, R. Antioxidant activity of honey supplemented with bee products. Nat. Prod. Res. 2015, 30, 1436–1439. [Google Scholar] [CrossRef]
- Kowalski, S.; Makarewicz, M. Functional properties of honey supplemented with bee bread and propolis. Nat. Prod. Res. 2017, 31, 2680–2683. [Google Scholar] [CrossRef]
Apiary Product | Origin | Botanical Origin | Content Added | Type of Product | Storage Temperature (°C) | Storage Days | Bacterial Culture | Effect | Reference |
---|---|---|---|---|---|---|---|---|---|
Honey | Egypt | Fennel honey | 5, 10, 15% | Yogurt | 6 ± 2 | 0, 3, 7, 14 | ABT-5 cultures (Lactobacillus acidophilus, Bifidobacterium bifidum and Streptococcus thermophilus) | Increase in Bifidobacteria counts during and at the end of storage time (until 54 × 106/g CFU), titratable acidity and total soluble solids were proportional to the honey content added and the storage time. | [13] |
Honey | Egypt | ---- | 0, 2, 4, 6% | Yogurt | 4 | 0, 7, 15 | S. thermophilus, L. delbrueckii subsp. bulgaricus (1:1) and ABT-5 | Bifidobacteria counts, acceptable to exhibit probiotic effect (1.7–3.5 × 106 CFU/g, at day 15), good sensory attributes, in particular, sample with 5% honey. | [14] |
Honey | Egypt | Sedr honey | 5, 10, 15, 20% | Yogurt | 6 ± 2 | 0, 3, 7, 14 | L. delbrueckii ssp. bulgaricus, S. thermophilus and ABT-5 | Increases in B. bifidum and S. thermophilus and high protein proportion compared to the control, | [15] |
Honey | Egypt | ---- | 5% | Yogurt | 4 | 0, 7, 14 | S. thermophilus and L. delbrueckii subsp. bulgaricus (1:1) and ABT-5 | High L. bulgaricus and S. thermophilus counts, significant increase in ashes, unsaturated fatty acids content, improvement of consistency and flavor. | [16] |
Honey | Turkey | Pine | 3, 5, 7% | Yogurt | 4 | 0, 7, 14, 28 | S. thermophilus and L. delbrueckii subsp. bulgaricus (1:1) | The addition of 7% honey presents the highest L. bulgaricus counts (8.27 log CFU/g). Better water retention capacity (led to lower syneresis), high viscosity than the control, low water activity, enhancement of antioxidant properties. | [17] |
Honey | Romania | ---- | 7% | Yogurt | ---- | ---- | S. thermophilus, and L. bulgaricus | Increase in S. thermophilus counts during storage, and a decrease in L. bulgaricus at the end of storage. | [18] |
Honey | Brazil | ---- | 5, 10, 15% | Yogurt | 4 ± 2 | 1, 7, 14, 21, 28 | S. salivarius subsp. thermophilus and L. delbrueckii subsp. bulgaricus and the probiotic culture of L. acidophilus La-05 | Honey as a growth-promoting probiotic ingredient (most evident between day 14 and before day 21 of storage). Odor characteristics, syneresis, viscosity, water retention capacity, sensory acceptance, and purchase intention were positively affected. | [19] |
Honey | Turkey | Pine | 2, 4, 6% | Yogurt | 4 | 1, 7, 14, 21 | S. thermophilus, L. delbrueckii subsp. bulgaricus, L. rhamnosus, L. acidophilus, L. plantarum, B. animals subsp | L. acidophilus and L. delbrueckii counts were minor to the control. The presence of honey increases acidity, promote less syneresis and color modification with increasing concentration (L* values were affected). | [20] |
Honey and royal jelly | Egypt | Egyptian clover (honey) | Honey: 2, 4, 6, 9% Royal jelly: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5% | Yogurt | 5 ± 1 | 0, 3, 6, 9 | S. thermophilus and L. delbrueckii subsp. bulgaricus | Improves viability of S. thermophilus with an addition of 4% honey, suggesting a prebiotic effect. An increase in viscosity and mineral content was observed. | [21] |
Honey | Algeria | Multifloral | Honey: 0, 2.5, 5% Pomegranate peel: 0, 2.5, 5, 10% | Yogurt powder | 4–6 | ---- | S. thermophilus and L. delbrueckii subsp. bulgaricus | No significant differences in moisture content or particle sizes distribution and density values were affected. Fortified samples showed higher phenolic content and antioxidant activities than control samples. | [22] |
Honey | Slovakia | Rape honey | 1, 3, 5% | Yogurt | 6 ± 1 | 1, 7, 14 | Laktoflora® | The dry matter content increases gradually with the addition of honey, with a lower cohesion and firmness, but a high antioxidant activity. | [23] |
Apiary Product | Origin | Content Added | Type of Product | Storage Temperature (°C) | Storage Days | Bacterial Culture | Effect | Reference | |
Bee pollen | Turkey | 2.5, 5.0, 7.5, 10, 20 mg/mL | Fermented milk beverages | 4 | 1, 7, 14, 21 | L. acidophilus, Bifidobacterium animalis subsp. lactis and S. thermophilus (ABT-1) | Possible antimicrobial effect against B. Lactis, negative effect on sensory properties. Increase in soluble solids content, and viscosity, more proteolytic activity (first day). | [24] | |
Bee pollen | Egypt | 0, 0.5, 1.0, 1.5, 2.0% | White cheese (camel and cow milk) | 10 | 0, 15, 30, 45 | ----- | Antibacterial activity (with 2%) for S. typhimurium and E. coli, 31 times high in total phenolic content (till 46.12 mg/g), detrimental effect on sensory attributes (texture, taste, acceptance, odor). | [25] | |
Bee pollen | Greece | 0.5, 1.0, 2.5, 3.0% | Yogurt (cow, goat and sheep) | 4 ± 1 | ---- | S. thermophilus and L. bulgaricus | Radical inhibition around 100%, the potential effect of the surface material causing an improvement in appearance and cohesion. | [26] | |
Bee pollen | India | 5, 10, 15%, with variations in temperature and pressure | Milk powder | 4 | ---- | ---- | Negative effect on solubility, apparent density within the limit for powdered foods, improvement of a lower molecular weight sugar concentration, resulting in a more hygroscopic powder. | [27] | |
Propolis | Egypt | 1, 2, 3% (aqueous extract) | Yogurt | 5 ± 1 | 0, 7, 14 | L. delbrueckii subsp. bulgaricus and S. thermophilus (1:1) | Variations in coagulation time were proportional to the aqueous extract of propolis added (synergistic effect); samples with 1 and 2% represented the highest sensory scores (fresh and during storage). | [28] | |
Propolis | Brazil | 0.05% | Yogurt | 4 ± 2 | 0, 7, 14, 28 | L. acidophilus, Bifidobacterium and S. thermophilus | Adequate concentrations of oleic and linoleic acid, without negative interactions in the survival of lactic acid bacteria, and high levels of antioxidant activity. | [29] | |
Propolis | Brazil | 0.05% | Yogurt | 4 ± 2 | 0, 7, 14, 21, 28 | L. acidophilus, Bifidobacterium and S. thermophilus | Inhibitory effect for Salmonella spp., and E. coli., cohesion increases, good sensory acceptance. | [30] | |
Propolis | Brazil | 0.5, 1.0, 1.5, 2.0% | Commercial milk, yogurt and Kefir | 4 | ---- | S. thermophilus, L. delbrueckii subsp. bulgaricus, L. acidophilus, and Bifidobacterium animalis subsp. lactis | Commercial milk, yogurt, and Kefir supplemented with 0.5% of propolis resulted in best organoleptic characteristics for each product. | [31] | |
Bee pollen and royal jelly | Egypt | Royal jelly: 0.6% Bee pollen: 0.8% | Yogurt | ~5 | 0, 7, 14, 21 | L. delbrueckii subsp. bulgaricus and S. thermophilus (1:1) | Decrease of S. thermophilus and L. delbrueckii subsp. bulgaricus counts. Total content of solids, ash, fat, protein, and acidity increases significantly. Acceptability improving during storage (up to day 7). | [32] | |
Royal jelly and bee pollen | Egypt | Royal jelly: 0.6% Bee pollen: 0.8% | Yogurt | 4 ± 1 | 0, 7, 14, 21 | L. delbrueckii spp. bulgaricus, S. thermophilus, Bifidobacterium angulatum, L. rhamnosus, and L. gasseri | Refrigeration conditions increase hardness and chewiness in bee product added samples, resulting in a better texture and less syneresis. | [33] | |
Royal jelly and bee pollen | Egypt | Royal jelly: 0.6% Bee pollen: 0.8% | Yogurt | 4 ± 1 | ---- | B. angulatum, L. gasseri and L. rhamnosus | Increase of amino acids and fatty acids content, high presence of acetaldehyde in treatment with 0.6% of royal jelly. | [34] | |
Honey and bee pollen | Bulgaria | Honey 5, 10, 15% Bee Pollen: 0.4, 0.6, 0.8% | Yogurt | ---- | ---- | S. thermophilus and L. delbrueckii ssp. Bulgaricus | No changes were observed in the organoleptic properties, with the incorporation of honey in 5% and pollen in 0.4%. | [35] |
Apiary Product | Origin | Content Added | Type of Product | Storage Temperature (°C) | Storage Days | Effect | Reference |
---|---|---|---|---|---|---|---|
Propolis | Slovakia | 0.06% in extract | Cured cooked ham | 4 | 21 (sliced) and 20, 50, 100 (unsliced). | Lower TBA values in unsliced hams after 100 days of storage. Hams sliced with propolis have a lower aroma intensity. | [69] |
Propolis | Italy | Powdered to 5% | Fish burgers | ---- | ---- | Formulation with 5% spray-dried propolis and 10% potato flakes and 9% olive oil, shows an increase in antioxidant activity and better sensory quality. | [70] |
Propolis | Colombia | 0.8% | Sausages with 60% porcine meat, 20% bovine meat and 20% porcine fat | 50 | 0, 8, 16, 24 | TBA value similar to sausage with sodium nitrite, lower concentration of volatile nitrogenous bases in all storage, the propolis addition does not modify the consumer acceptance. | [71] |
Propolis | Colombia | 0.8, 1.2% | Fish fillets | 3 | 0, 4, 8, 12, 16, 20, 24 | Growth inhibition of bacterial pathogens (Clostridum sp., Salmonella, Escherichia coli, Staphylococcus aureus), acceptable microbiological load in storage with 0.8 mg/mL and 1.2 mg/mL (6.1 log CFU/g and 5.4 log CFU/g, respectively), color remained unchanged at 0.8% propolis added. | [72] |
Propolis | Brazil | 0.01, 0.05% andcompared to TBH | Italian-type salami (pork meat) | 18 | 1, 15, 35 | No relevant changes in proximal composition, protective effect similar to BHT or TBAR with the extract of 0.05% propolis. | [73] |
Propolis | Brazil | 0.1 g/Kg | Burger meat (lean beef) | −15 ± 0.6 | 0, 7, 14, 21, 28 | Effective protective agent to control TBA values similar to sodium erythorbate, aroma and flavor results below ideal. | [74] |
Propolis | China | 1% | Fish sausages | 2 | 63 (9 weeks) | TBA values below the limit of 5 mg/kg in fish meat and lower than the control sample during storage, an improvement in shelf life is concluded, reduction in sensory attributes. Escherichia coli and Salmonella were not detected in any sample. | [75] |
Bee pollen | Turkey | 0, 1.5, 3.0, 4.5, 6.0% | Frozen meatballs | −20 ± 1 | 0, 30, 60, 90 | Lower TBA values, total viable counts decreases. Chroma (C) and hue angle (h) values increases with 4.5 and 6.0%, respectively as the concentration of pollen is added. | [76] |
Bee pollen | Brazil | 0.2 g/kg | Pork sausages | 4 | 0, 5, 10, 15, 20, 25, 30 | Control of lipid oxidation exhibiting lower TBA values, compared before (0.67 vs. 2.44 mg/kg) and after storage (4.08 vs. 4.71 mg/kg). | [77] |
Bee pollen | Brazil | 0.1 g/Kg | Beef burger | −12 | 0, 7, 14, 21, 28, 35 and 42 | Lower TBA values in the samples with pollen, suggesting an increase shelf life up to 42 days storage. | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho-Bernal, G.I.; Cruz-Cansino, N.d.S.; Ramírez-Moreno, E.; Delgado-Olivares, L.; Zafra-Rojas, Q.Y.; Castañeda-Ovando, A.; Suárez-Jacobo, Á. Addition of Bee Products in Diverse Food Sources: Functional and Physicochemical Properties. Appl. Sci. 2021, 11, 8156. https://doi.org/10.3390/app11178156
Camacho-Bernal GI, Cruz-Cansino NdS, Ramírez-Moreno E, Delgado-Olivares L, Zafra-Rojas QY, Castañeda-Ovando A, Suárez-Jacobo Á. Addition of Bee Products in Diverse Food Sources: Functional and Physicochemical Properties. Applied Sciences. 2021; 11(17):8156. https://doi.org/10.3390/app11178156
Chicago/Turabian StyleCamacho-Bernal, Gloria Isabel, Nelly del Socorro Cruz-Cansino, Esther Ramírez-Moreno, Luis Delgado-Olivares, Quinatzin Yadira Zafra-Rojas, Araceli Castañeda-Ovando, and Ángela Suárez-Jacobo. 2021. "Addition of Bee Products in Diverse Food Sources: Functional and Physicochemical Properties" Applied Sciences 11, no. 17: 8156. https://doi.org/10.3390/app11178156
APA StyleCamacho-Bernal, G. I., Cruz-Cansino, N. d. S., Ramírez-Moreno, E., Delgado-Olivares, L., Zafra-Rojas, Q. Y., Castañeda-Ovando, A., & Suárez-Jacobo, Á. (2021). Addition of Bee Products in Diverse Food Sources: Functional and Physicochemical Properties. Applied Sciences, 11(17), 8156. https://doi.org/10.3390/app11178156