Enhancement of Desulfurization Capacity with Cu-Based Macro-Porous Sorbents for Hydrogen Production by Gasification of Petroleum Cokes
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation of PMMA Colloidal Solution by Suspension Polymerization
2.2. Preparation of Macro-Porous Alumina by Template Method
2.3. Preparation of CuO/Alumina Absorbent by Impregnation Method
2.4. Desulfurization Tests of Absorbents
2.5. Characterization
3. Computation Details
4. Experimental Results
4.1. Crystal Structure Analysis of Cu-Based Absorbents on Γ-Alumina and Macro-Porous Alumina
4.2. Characterization of CuO on γ-Alumina and Macro-Porous Alumina
4.3. Surface Structure Analysis
4.4. Desulfurization Tests
5. Computational Results
5.1. Stability of Desulfurization Intermediates
5.2. Mechanism of the Initial Desulfurization Kinetics
5.3. Kinetics of CO Production
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alanne, K.; Cao, S. An overview of the concept and technology of ubiquitous energy. Appl. Energy 2019, 238, 284–302. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Wei, J.; Guo, Q.; Gong, Y.; Ding, L.; Yu, G. Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification. Renew. Energy 2020, 155, 111–120. [Google Scholar] [CrossRef]
- Murthy, B.N.; Sawarkar, A.N.; Deshmukh, N.A.; Mathew, T.; Joshi, J.B. Petroleum coke gasification: A review. Can. J. Chem. Eng. 2014, 92, 441–468. [Google Scholar] [CrossRef]
- Nemanova, V.; Abedini, A.; Liliedahl, T.; Engvall, K. Co-gasification of petroleum coke and biomass. Fuel 2014, 117, 870–875. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Y.; Liu, B.; Gao, L.; Duan, G. CuO nanoparticle loaded ZnO hierarchical heterostructure to boost H2S sensing with fast recovery. Sens. Actuators B Chem. 2021, 338, 129806. [Google Scholar] [CrossRef]
- Meshkat, S.S.; Ghasemy, E.; Rashidi, A.; Tavakoli, O.; Esrafili, M. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study. Front. Environ. Sci. Eng. 2021, 15, 109. [Google Scholar] [CrossRef]
- Liu, D.; Li, B.; Wu, J.; Liu, Y. Sorbents for hydrogen sulfide capture from biogas at low temperature: A review. Environ. Chem. Lett. 2020, 18, 113–128. [Google Scholar] [CrossRef]
- Xu, W.; Adewuyi, Y.G.; Liu, Y.; Wang, Y. Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound. Fuel Process. Technol. 2018, 170, 21–31. [Google Scholar] [CrossRef]
- Montes, D.; Tocuyo, E.; González, E.; Rodríguez, D.; Solano, R.; Atencio, R.; Ramos, M.A.; Moronta, A. Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO. Microporous Mesoporous Mater. 2013, 168, 111–120. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Fan, H.; Wang, H.; Hu, Y.; Wang, Z. Highly porous copper oxide sorbent for H2S capture at ambient temperature. Fuel 2017, 209, 329–338. [Google Scholar] [CrossRef]
- Pola-Albores, F.; Zambrano-Solís, K.; Ríos-Valdovinos, E.; Conde-Díaz, J.; Vilchis-Bravo, H.; Reyes-Nava, J.; Pantoja-Enríquez, J.; Moreira-Acosta, J. ZnO and Cu-based adsorbents for biogas desulfurization at room temperature. J. Mater. Sci. Mater. Electron. 2018, 29, 15597–15603. [Google Scholar] [CrossRef]
- Zheng, X.; Bao, W.; Chang, L.; Jin, Q.; He, R.; Xie, K. Interaction among Metal Components of Zn–Mn–Cu-Based Sorbents Prepared by High-Pressure Impregnation Method and Its Effect on the Removal of H2S from Hot Coal Gas. Energy Fuels 2012, 26, 3393–3398. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.; Wang, H.; Liu, C. Ordered mesoporous Cu-ZnO-Al2O3 adsorbents for reactive adsorption desulfurization with enhanced sulfur saturation capacity. Chin. J. Catal. 2018, 39, 1543–1551. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, W.; Liu, W.; Yue, M.; Zhu, Y.; Yang, M. Facile preparation of cuprous oxide decorated mesoporous carbon by one-step reductive decomposition for deep desulfurization. Fuel 2019, 241, 777–785. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Shi, R.-H.; Fan, H.-L.; Yang, C.; Zhang, C.-N.; Wang, Y.-S.; Tian, Z. Defect creation by benzoic acid in Cu-Based Metal−Organic frameworks for enhancing sulfur capture. Microporous Mesoporous Mater. 2020, 298, 110070. [Google Scholar] [CrossRef]
- Liang, S.; Peng, B.; Liu, S.; Zhang, W.; Guo, M.; Cheng, F.; Zhang, M. Low-Temperature Highly Efficient and Selective Removal of H2S over Three-Dimensional Zn–Cu-Based Materials in an Anaerobic Environment. Environ. Sci. Technol. 2020, 54, 5964–5972. [Google Scholar] [CrossRef] [PubMed]
- Subhan, F.; Aslam, S.; Yan, Z.; Zhen, L.; Ikram, M.; Ullah, R.; Etim, U.J.; Ahmad, A. Ammonia assisted functionalization of cuprous oxide within confined spaces of SBA-15 for adsorptive desulfurization. Chem. Eng. J. 2018, 339, 557–565. [Google Scholar] [CrossRef]
- Shi, R.-H.; Zhang, Z.-R.; Fan, H.-L.; Zhen, T.; Shangguan, J.; Mi, J. Cu-based metal–organic framework/activated carbon composites for sulfur compounds removal. Appl. Surf. Sci. 2017, 394, 394–402. [Google Scholar] [CrossRef]
- Basina, G.; Gaber, D.A.; Yafei, S.A.; Tzitzios, V.; Gaber, S.A.; Ismail, I.; Vaithilingam, B.V.; Polychronopoulou, K.; Hashimi, S.A.; Wahedi, Y.A. Mesoporous silica “plated” copper hydroxides/oxides heterostructures as superior regenerable sorbents for low temperature H2S removal. Chem. Eng. J. 2020, 398, 125585. [Google Scholar] [CrossRef]
- Park, N.-K.; Kwon, B.C.; Park, C.J.; Kang, M.; Lee, T.J.; Lee, S.J.; Chi, J.H. Improvement on Sulfur Capacity of Cu-Al-Based Desulfurization Sorbents with Various Transition Metal Additives for Coal Derived Synthetic Gas Cleaning. J. Nanosci. Nanotechnol. 2019, 19, 6641–6646. [Google Scholar] [CrossRef]
- Park, N.-K.; Jeong, Y.; Lee, T.; Lee, S.; Lee, S. Reduction of Macro-Porous Silica by the Aluminum for Anode Material of Lithium-Ion Batteries: Effect of SiO₂/Al Ratio. J. Nanosci. Nanotechnol. 2018, 18, 7275–7280. [Google Scholar] [CrossRef]
- Park, N.-K.; Lee, T.J. Preparation of Micro-Channel Catalytic Reactor Coated with Macro-Porous Al2O3 for Fuel Reformer. Int. J. Precis. Eng. Manuf. 2014, 15, 1241–1246. [Google Scholar] [CrossRef]
- Shqau, K.; Mottern, M.; Yu, D.; Verweij, H. Preparation and Properties of Porous α-Al2O3 Membrane Supports. J. Am. Ceram. Soc. 2006, 89, 1790–1794. [Google Scholar] [CrossRef]
- Kwon, B.; Kang, D.; Lee, S.W.; Park, N.; Lee, J.H.; Hwang, S.; Seo, M.J.; Lim, D. Synthesis of Macro-Porous De-NOx Catalysts for Poly-Tetra-Fluoro-Ethylene Membrane Bag Filter. J. Nanosci. Nanotechnol. 2021, 21 8, 4537–4543. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. Condens. Matter 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Mehar, V.; Kim, M.; Shipilin, M.; Van den Bossche, M.; Gustafson, J.; Merte, L.R.; Hejral, U.; Grönbeck, H.; Lundgren, E.; Asthagiri, A.; et al. Understanding the Intrinsic Surface Reactivity of Single-Layer and Multilayer PdO(101) on Pd(100). ACS Catal. 2018, 8, 8553–8567. [Google Scholar] [CrossRef]
- Kim, M.; Franklin, A.D.; Martin, R.; Bian, Y.; Weaver, J.F.; Asthagiri, A. Kinetics of low-temperature methane activation on IrO2(1 1 0): Role of local surface hydroxide species. J. Catal. 2020, 383, 181–192. [Google Scholar] [CrossRef]
- Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J.F. Low-temperature activation of methane on the IrO2(110) surface. Science 2017, 356, 299–303. [Google Scholar] [CrossRef]
- Åsbrink, S.; Norrby, L.-J. A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.’s. Acta Crystallogr. Sect. B 1970, 26, 8–15. [Google Scholar] [CrossRef]
- Massarotti, V.; Capsoni, D.; Bini, M. X-ray powder diffraction ab initio structure solution of materials from solid state synthesis: The copper oxide case. Z. Krist. Cryst. Mater. 1998, 213, 259–265. [Google Scholar] [CrossRef]
- Wulff, G. Xxv. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Z. Für Krist.-Cryst. Mater. 1901, 34, 449–530. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Pan, L.; Weaver, J.F.; Asthagiri, A. Initial Reduction of the PdO(101) Surface: Role of Oxygen Vacancy Formation Kinetics. J. Phys. Chem. C 2018, 122, 26007–26017. [Google Scholar] [CrossRef]
- Zheng, C.; Zhao, H. Exploring the microscopic reaction mechanism of H2S and COS with CuO oxygen carrier in chemical looping combustion. Fuel Process. Technol. 2020, 205, 106431. [Google Scholar] [CrossRef]
- Maimaiti, Y.; Nolan, M.; Elliott, S.D. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption. Phys. Chem. Chem. Phys. 2014, 16, 3036–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Samples | Amounts of CuO, wt % | Surface Area, m2/g | Total Pore Volume, cm3/g | Pore Diameter, nm |
---|---|---|---|---|
CuO/γ-Al2O3 | 5.0 | 180.5 | 0.4280 | 9.5 |
10.0 | 168.2 | 0.3992 | 9.5 | |
15.0 | 151.1 | 0.3213 | 8.5 | |
CuO/macro-porous-Al2O3 | 5.0 | 202.8 | 0.3020 | 6.0 |
10.0 | 188.3 | 0.2959 | 6.3 | |
15.0 | 148.5 | 0.2202 | 5.9 |
Samples | Amounts of CuO, wt % | Sulfur Capacity, mgS/g-Sorbent |
---|---|---|
CuO/γ-Al2O3 | 5.0 | 19.5 |
10.0 | 43.2 | |
15.0 | 36.2 | |
CuO/macro-porous-Al2O3 | 5.0 | 26.5 |
10.0 | 48.8 | |
15.0 | 50.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Bae, D.; Kim, Y.J.; Lee, S.J.; Lee, J.W.; Yun, Y.; Park, N.-K.; Kim, M. Enhancement of Desulfurization Capacity with Cu-Based Macro-Porous Sorbents for Hydrogen Production by Gasification of Petroleum Cokes. Appl. Sci. 2021, 11, 7775. https://doi.org/10.3390/app11177775
Kim D, Bae D, Kim YJ, Lee SJ, Lee JW, Yun Y, Park N-K, Kim M. Enhancement of Desulfurization Capacity with Cu-Based Macro-Porous Sorbents for Hydrogen Production by Gasification of Petroleum Cokes. Applied Sciences. 2021; 11(17):7775. https://doi.org/10.3390/app11177775
Chicago/Turabian StyleKim, Dongjoon, Dasol Bae, Yu Jin Kim, Seung Jong Lee, Jin Wook Lee, Yongseung Yun, No-Kuk Park, and Minkyu Kim. 2021. "Enhancement of Desulfurization Capacity with Cu-Based Macro-Porous Sorbents for Hydrogen Production by Gasification of Petroleum Cokes" Applied Sciences 11, no. 17: 7775. https://doi.org/10.3390/app11177775
APA StyleKim, D., Bae, D., Kim, Y. J., Lee, S. J., Lee, J. W., Yun, Y., Park, N. -K., & Kim, M. (2021). Enhancement of Desulfurization Capacity with Cu-Based Macro-Porous Sorbents for Hydrogen Production by Gasification of Petroleum Cokes. Applied Sciences, 11(17), 7775. https://doi.org/10.3390/app11177775