Acoustic and Dynamic Response of Unbaffled Plates of Arbitrary Shape
Abstract
:Featured Application
Abstract
1. Introduction
2. Models and Methods
2.1. Calculation of Pressure Jump
2.2. Calculation of Pressure Jump
2.3. Boundary Element Method
2.4. Procedure for Computing Natural Frequencies
- 1.
- A set of reduced frequencies is then determined, defined as , where ωj is the jth natural frequency of the coupled incompressible fluid structure.
- 2.
- These results are assumed as an initial guess, and by letting the added mass matrix to now be a function of k, the natural frequencies of the system are recalculated until convergence is achieved (for further details, see Gascón and García-Fogeda [8]). For each natural frequency, the procedure converges after two or three iterations. For a compressible fluid, the natural frequencies are obtained sequentially, whereas for an incompressible fluid, all natural frequencies are obtained simultaneously.
- 3.
- After the natural frequencies of the coupled fluid–structure system have been determined, the normal modes can be computed and expressed as a linear combination of the normal modes of the structure in vacuum.
2.5. Calculation of the Dynamic Response of the Structure Immersed in the Diffuse Field
3. Results
3.1. Acoustic Loading on a Rigid Plate
3.2. Effect of Fluid on Dynamic Plate Characteristics
3.3. Response of a Rectangular Plate to the Diffuse Field
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferdous, W.; Manalo, A.; Peauril, J.; Salih, C.; Reddy, K.R.; Yu, P.; Schubel, P.; Heyer, T. Testing and modelling the fatigue behaviour of GFRP composites—Effect of stress level, stress concentration and frequency. Eng. Sci. Technol. Int. J. 2020, 23, 1223–1232. [Google Scholar] [CrossRef]
- Zangana, S.; Epaarachchi, J.; Ferdous, W.; Leng, J.; Schubel, P. Behaviour of continuous fibre composite sandwich core under low-velocity impact. Thin-Walled Struct. 2020, 158, 107157. [Google Scholar] [CrossRef]
- He, W.; Liu, J.; Wang, S.; Xie, D. Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores. Compos. Struct. 2018, 189, 37–53. [Google Scholar] [CrossRef]
- Berry, A.; Guyader, J.; Nicolas, J. A general formulation for the sound radiation from rectangular, baffled plates with arbitrary boundary conditions. J. Acoust. Soc. Am. 1990, 88, 2792–2802. [Google Scholar] [CrossRef]
- Filippi, P.; Lagarrigue, O.; Mattei, P.-O. Perturbation Method for Sound Radiation By A Vibrating Plate In A Light Fluid: Comparison With The Exact Solution. J. Sound Vib. 1994, 177, 259–275. [Google Scholar] [CrossRef]
- Lomas, N.S.; Hayek, S.I. Vibration and acoustic radiation of elastically supported rectangular plates. J. Sound Vib. 1977, 52, 1–25. [Google Scholar] [CrossRef]
- Stepanishen, P.R. The radiation impedance of a rectangular piston. J. Sound Vib. 1977, 55, 275–288. [Google Scholar] [CrossRef]
- Skudrzyk, E. The Foundations of Acoustics; Springer: Berlin/Heidelberg, Germany, 1971; ISBN 3211809880. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, W.; Liu, Y. Analyzing Acoustic Radiation Modes of Baffled Plates with a Fast Multipole Boundary Element Method. J. Vib. Acoust. 2013, 135, 011007. [Google Scholar] [CrossRef]
- Sharma, G.S.; Sarkar, A. Directivity based control of acoustic radiation. Appl. Acoust. 2019, 154, 226–235. [Google Scholar] [CrossRef]
- Sharma, G.S.; Sarkar, A. Directivity-Based Passive Barrier for Local Control of Low-Frequency Noise. J. Theor. Comput. Acoust. 2018, 26, 1850012. [Google Scholar] [CrossRef]
- Atalla, N. Acoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions. J. Acoust. Soc. Am. 1996, 99, 1484–1494. [Google Scholar] [CrossRef]
- Gascón-Pérez, M.; Garcia-Fogeda, P. Induced Damping on Vibrating Circular Plates Submerged in Still Fluid. Int. J. Appl. Mech. 2015, 7, 1550079. [Google Scholar] [CrossRef] [Green Version]
- Nélisse, H.; Beslin, O.; Nicolas, J. Fluid–structure coupling for an unbaffled elastic panel immersed in a diffuse field. J. Sound Vib. 1996, 198, 485–506. [Google Scholar] [CrossRef]
- Laulagnet, B. Sound radiation by a simply supported unbaffled plate. J. Acoust. Soc. Am. 1998, 103, 2451–2462. [Google Scholar] [CrossRef]
- Nowak, L.J.; Zieliński, T.G. Determination of the Free-Field Acoustic Radiation Characteristics of the Vibrating Plate Structures with Arbitrary Boundary Conditions. J. Vib. Acoust. 2015, 137, 051001. [Google Scholar] [CrossRef]
- Fowler, J.; Lagerquist, N.; Leve, H. Effect of Air in Modal Tests. In Proceedings of the 5th International Modal Analysis Conference, London, UK, 6–9 April 1987. [Google Scholar]
- Maidanik, G. Response of Ribbed Panels to Reverberant Acoustic Fields. J. Acoust. Soc. Am. 1962, 34, 809–826. [Google Scholar] [CrossRef] [Green Version]
- Arenas, J.P. On the vibration analysis of rectangular clamped plates using the virtual work principle. J. Sound Vib. 2003, 266, 912–918. [Google Scholar] [CrossRef]
- Mattei, P.-O. A Two-Dimensional Tchebycheff Collocation Method for The Study of The Vibration of A Baffled Fluid-Loaded Rectangular Plate. J. Sound Vib. 1996, 196, 407–427. [Google Scholar] [CrossRef]
- Ben Mariem, J.; Hamdi, M.A. A new boundary finite element method for fluid-structure interaction problems. Int. J. Numer. Methods Eng. 1987, 24, 1251–1267. [Google Scholar] [CrossRef]
- Coyette, J.P. A Synthesis of Available Numerical Methods for Modeling Vibroacoustic Problem. In Proceedings of the Congress Spacecraft Structures and Mechanical Testing, Paris, France, 21–24 June 1994. [Google Scholar]
- Göransson, P.; Ek, K.; Brandt, J.; Defosse, H.; Hamdi, M.A.; Mebarek, L.; Faust, M.; Baier, H.; Klein, M.; Witting, M. New Coupled Finite Element and Boundary Element Approaches to Perform 3-Dimensional Payload Effect Simulations in Launcher Payloads Compartment Structures. In Proceedings of the Congress Spacecraft Structures and Mechanical Testing, CNES/ESA, Paris, France, 21–24 June 1994. ISSN 0766-1002. [Google Scholar]
- Gieva, E.E.; Ruskova, I.N.; Nedlchev, K.I.; Kralov, I. COMSOL Numerical Investigation of Acoustic Absorber. In Proceedings of the IX National Conference with International Participation Conference “Electronica 2018”, Sofia, Bulgaria, 17–18 May 2018. [Google Scholar] [CrossRef]
- Paolozzi, A.; Peroni, I. Response of aerospace sandwich panels to launch acoustic environment. J. Sound Vib. 1996, 196, 1–18. [Google Scholar] [CrossRef]
- Troclet, B.; Vanpeperstraete, S.; Schott, M. Experimental Analysis of Lift-off and Aerodynamic Noise on the Ariane 5 Launch Vehicle. In Proceedings of the First Joint CEAS/AIAA Aeroacoustics Conference, Munich, Germany, 12–15 June 1995; pp. 535–544. [Google Scholar]
- ESA PSS-03-204. Structural Acoustics Design Manual; ESA Publication Division, ESTEC: Noordwijk, The Netherlands, 1996; Issue 1; ISSN 0379-4059. [Google Scholar]
- Tseng, W.-K. A Novel Method of Designing Quiet Zones in Diffuse Fields. J. Vib. Acoust. 2013, 135, 011001. [Google Scholar] [CrossRef]
- Grooteman, F.P.; de Boer, A.; Schippers, H. Vibro-Acoustic Analysis of Double Wall Structures. In Proceedings of the First Joint CEAS/AIAA Aeroacoustics Conference, Munich, Germany, 12–15 June 1995; pp. 1049–1054. [Google Scholar]
- Hamdi, M.A.; Jean, P. A Mixed Functional for the Numerical Resolution of Fluid-Structure Interaction Problems. In Aero- and Hydro-Acoustics; Comte-Bellot, G., Williams, J.E.F., Eds.; IUTAM Symposia (International Union of Theoretical and Applied Mechanics); Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Hamdi, M.A. RAYON User’s Manual; STRACO S.A.: Compiegne, France, 1992. [Google Scholar]
- Capitaine, A.; Lome, J.-M. Prediction de la Response Dynamique d’une Structure dans un Champ Acoustique Diffus. Correlation avec des Test. In Proceedings of the Congress Spacecraft Structures and Mechanical Testing, Paris, France, 21–24 June 1994. [Google Scholar]
- Putra, A.; Thompson, D. Radiation efficiency of unbaffled and perforated plates near a rigid reflecting surface. J. Sound Vib. 2011, 330, 5443–5459. [Google Scholar] [CrossRef]
- Kim, M.J.; Won, K.S.; Ri, C.S. An Improved MSA Model for Evaluating the Sound Transmission Loss of a Rectangular Plate for a Diffuse Field Incidence. Arch. Acoust. 2019, 44, 259–265. [Google Scholar]
- Nigam, N.C.; Narayanan, S. Applications of Random Vibrations; Springer: Berlin/Heidelberg, Germany; Narosa Publishing House: New Delhi, India, 1994; ISBN 354019861X. [Google Scholar]
Rectangular Simply Supported Plate | ||||
---|---|---|---|---|
Frequency (Hz) | Equivalent Damping (kg/s) | |||
In vacuum | Incompressible | Compressible | ||
1st mode | 563.1 | 525.5 | 540.8 | 262.1 |
2nd mode | 1006.4 | 961.6 | 1000.0 | 514.8 |
3rd mode | 1482.0 | 1432.9 | 1479.2 | 143.9 |
4th mode | 1701.0 | 1647.9 | 1699.6 | 180.2 |
Trapezoidal Plate Simply Supported | ||||
Frequency (Hz) | Equivalent Damping (kg/s) | |||
In vacuum | Incompressible | Compressible | ||
1st mode | 168.2 | 148.7 | 142.9 | 26.1 |
2nd mode | 350.3 | 324.8 | 309.1 | 11.2 |
3rd mode | 448.2 | 418.8 | 410.9 | 215.1 |
4th mode | 622.2 | 592.1 | 604.8 | 183.4 |
Trapezoidal Cantilever Plate | ||||
Frequency (Hz) | Equivalent Damping (kg/s) | |||
In vacuum | Incompressible | Compressible | ||
1st mode | 27.5 | 24.9 | 24.9 | 0.01 |
2nd mode | 84.5 | 79.5 | 79.3 | 1.12 |
3rd mode | 147.2 | 133.6 | 133.5 | 0.14 |
4th mode | 245.1 | 232.3 | 229.9 | 1.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Fogeda, P.; de la Iglesia, F.; Salehi, K. Acoustic and Dynamic Response of Unbaffled Plates of Arbitrary Shape. Appl. Sci. 2021, 11, 8019. https://doi.org/10.3390/app11178019
García-Fogeda P, de la Iglesia F, Salehi K. Acoustic and Dynamic Response of Unbaffled Plates of Arbitrary Shape. Applied Sciences. 2021; 11(17):8019. https://doi.org/10.3390/app11178019
Chicago/Turabian StyleGarcía-Fogeda, Pablo, Fernando de la Iglesia, and Keyvan Salehi. 2021. "Acoustic and Dynamic Response of Unbaffled Plates of Arbitrary Shape" Applied Sciences 11, no. 17: 8019. https://doi.org/10.3390/app11178019
APA StyleGarcía-Fogeda, P., de la Iglesia, F., & Salehi, K. (2021). Acoustic and Dynamic Response of Unbaffled Plates of Arbitrary Shape. Applied Sciences, 11(17), 8019. https://doi.org/10.3390/app11178019