Toxic Effects of Heavy Metals and Organic Polycyclic Aromatic Hydrocarbons in Sediment Porewater on the Amphipod Hyalella azteca and Zebrafish Brachydanio rerio Embryos from Different Rivers in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sediment Porewater Toxicity Testing with the Amphipod Hyalella azteca
2.3. Sediment Porewater Toxicity Testing with Zebrafish Embryos
2.4. Analysis of Polycyclic Aromatic Hydrocarbons (PAHs)
2.5. Analysis of Trace Metals
2.6. Calculations of Porewater Toxicity by Interstitial Water Benchmark Units (IWBUs)/Interstitial Water Toxic Units (IWTU)
3. Results and Discussion
3.1. Water Quality Monitoring of Porewater Samples
3.2. Survival Rate of Hyalella azteca Exposed to Whole Sediment Porewater Samples
3.3. Toxic Effects of Sediment Porewater on Zebrafish Embryos
3.4. Toxic Effects of Sediment Porewater on Zebrafish Embryos
3.5. Toxic Effects on Embryonic Cardiac Function
3.6. Comparative Results of PAH Concentrations
3.7. Comparison of Results from PAH Analysis and Biological Survival Rates
3.8. Discussion of Trace Metal Concentrations of Sediment Porewater and the Survival Rate of Hyalella azteca
3.9. Interstitial Water Benchmark Units (IWBUs) and Interstitial Water Toxic Units (IWTUs) Used to Determine Toxicity in Sediment Porewater
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahms, H. New Challenges by Toxic Threats to the Environment. Dahms HU Environ. Toxicol. Stud. J. 2018, 2, 7. [Google Scholar]
- Wu, M.-C.; Dahms, H.-U.; Liu, C.-H.; Hsieh, C.-Y.; Wang, C.-C.; Ho, Z.-Y. Estuarine sediment toxicity testing with an indigenous subtropical amphipod. Mar. Pollut. Bull. 2021, 162, 111797. [Google Scholar] [CrossRef]
- Guérin, T.; Chekri, R.; Vastel, C.; Sirot, V.; Volatier, J.-L.; Leblanc, J.-C.; Noël, L. Determination of 20 trace elements in fish and other seafood from the French market. Food Chem. 2011, 127, 934–942. [Google Scholar] [CrossRef]
- Dahms, H.U. The grand challenges in marine pollution research. Front. Mar. Sci. 2014, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Dahms, H.U.; Dobretsov, S. Antifouling compounds from marine macroalgae. Mar. Drugs 2017, 15, 265. [Google Scholar] [CrossRef]
- Cleveland, D.; Brumbaugh, W.G.; MacDonald, D.D. A comparison of four porewater sampling methods for metal mixtures and dissolved organic carbon and the implications for sediment toxicity evaluations. Environ. Toxicol. Chem. 2017, 36, 2906–2915. [Google Scholar] [CrossRef]
- Simpson, S.; Batley, G. Sediment Quality Assessment: A Practical Guide; Csiro Publishin: Victoria, Australia, 2016. [Google Scholar]
- Baran, A.; Urbaniak, M.; Szara, M.; Tarnawski, M. Concentration of dioxin and screening level ecotoxicity of pore water from bottom sediments in relation to organic carbon contents. Ecotoxicology 2021, 30, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Ying, G.G.; Rawson, C.A.; Kookana, R.S.; Peng, P.A.; Warne, M.S.; Tremblay, L.A.; Laginestra, E.; Chapman, J.C.; Lim, R.P. Contamination and screening level toxicity of sediments from remediated and unremediated wetlands near Sydney, Australia. Environ. Toxicol. Chem. Int. J. 2009, 28, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Roig, N.; Nadal, M.; Sierra, J.; Ginebreda, A.; Schuhmacher, M.; Domingo, J.L. Novel approach for assessing heavy metal pollution and ecotoxicological status of rivers by means of passive sampling methods. Environ. Int. 2011, 37, 671–677. [Google Scholar] [CrossRef] [PubMed]
- de Castro-Català, N.; Kuzmanovic, M.; Roig, N.; Sierra, J.; Ginebreda, A.; Barceló, D.; Pérez, S.; Petrovic, M.; Picó, Y.; Schuhmacher, M. Ecotoxicity of sediments in rivers: Invertebrate community, toxicity bioassays and the toxic unit approach as complementary assessment tools. Sci. Total Environ. 2016, 540, 297–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, L.; Ge, J.; Zhu, Y.; Yang, Y.; Wang, J. Concentrations, bioaccumulation, and human health risk assessment of organochlorine pesticides and heavy metals in edible fish from Wuhan, China. Environ. Sci. Pollut. Res. 2015, 22, 15866–15879. [Google Scholar] [CrossRef] [PubMed]
- Dahms, H.-U.; Won, E.-J.; Kim, H.-S.; Han, J.; Park, H.G.; Souissi, S.; Raisuddin, S.; Lee, J.-S. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing. Aquat. Toxicol. 2016, 180, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Tzoraki, O.; Karaouzas, I.; Patrolecco, L.; Skoulikidis, N.; Nikolaidis, N. Polycyclic aromatic hydrocarbons (PAHs) and heavy metal occurrence in bed sediments of a temporary river. Water Air Soil Pollut. 2015, 226, 1–19. [Google Scholar] [CrossRef]
- Lei, P.; Zhang, H.; Shan, B.; Zhang, B. Distribution, diffusive fluxes, and toxicity of heavy metals and PAHs in pore water profiles from the northern bays of Taihu Lake. Environ. Sci. Pollut. Res. 2016, 23, 22072–22083. [Google Scholar] [CrossRef]
- Subashchandrabose, S.R.; Wang, L.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Interactive effects of PAHs and heavy metal mixtures on oxidative stress in Chlorella sp. MM3 as determined by artificial neural network and genetic algorithm. Algal Res. 2017, 21, 203–212. [Google Scholar] [CrossRef]
- Hartzell, S.E.; Unger, M.A.; Vadas, G.G.; Yonkos, L.T. Evaluating porewater polycyclic aromatic hydrocarbon–related toxicity at a contaminated sediment site using a spiked field-sediment approach. Environ. Toxicol. Chem. 2018, 37, 893–902. [Google Scholar] [CrossRef]
- Zhang, C.; Shan, B.; Tang, W.; Wang, C.; Zhang, L. Identifying sediment-associated toxicity in rivers affected by multiple pollutants from the contaminant bioavailability. Ecotoxicol. Environ. Saf. 2019, 171, 84–91. [Google Scholar] [CrossRef]
- Chen, C.-F.; Ju, Y.-R.; Su, Y.-C.; Lim, Y.C.; Kao, C.-M.; Chen, C.-W.; Dong, C.-D. Distribution, sources, and behavior of PAHs in estuarine water systems exemplified by Salt River, Taiwan. Mar. Pollut. Bull. 2020, 154, 111029. [Google Scholar] [CrossRef]
- Valentina, P.; Michele, M.; Tommaso, G.; Letizia, M.; Laura, M.M.; Francesca, M.; Adriano, S.; Augusto, S.A.; Cristina, M. Sediment Contamination by Heavy Metals and PAH in the Piombino Channel (Tyrrhenian Sea). Water 2021, 13, 1487. [Google Scholar] [CrossRef]
- Blanco, S.; Bécares, E. Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere 2010, 79, 18–25. [Google Scholar] [CrossRef]
- Shu, Y.Y.; Lee, M.R. Development of the Analysis method of Nitrated-Polycyclic Aromatic Hydrocarbons in Diesel Exhaust Particulates (2/2); EPA-97-E3S2-02-01; EPA Environmental Inspection: Taoyuan, Taiwan, 2008. [Google Scholar]
- Inam, E.; Offiong, N.-A.; Essien, J.; Kang, S.; Kang, S.-Y.; Antia, B. Polycyclic aromatic hydrocarbons loads and potential risks in freshwater ecosystem of the Ikpa River Basin, Niger Delta—Nigeria. Environ. Monit. Assess. 2016, 188, 49. [Google Scholar] [CrossRef]
- Ali, M.U.; Siyi, L.; Yousaf, B.; Abbas, Q.; Hameed, R.; Zheng, C.; Kuang, X.; Wong, M.H. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review. Crit. Rev. Environ. Sci. Technol. 2020, 51, 857–896. [Google Scholar] [CrossRef]
- Ramesh, A.; Archibong, A.E.; Hood, D.B.; Guo, Z.; Loganathan, B.G. Global environmental distribution and human health effects of polycyclic aromatic hydrocarbons. In Global Contamination Trends of Persistent Organic Chemicals; Lam, P.K.S., Loganathan, B.G., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 97–126. [Google Scholar]
- Sfakianakis, D.; Renieri, E.; Kentouri, M.; Tsatsakis, A. Effect of heavy metals on fish larvae deformities: A review. Environ. Res. 2015, 137, 246–255. [Google Scholar] [CrossRef]
- Ikue, G.S.; Monanu, M.O.; Onuah, C.L. Bioaccumulation of polycyclic aromatic hydrocarbons in tissues (gills and muscles) of (catfish) Chrysichthys nigrodidatatus from crude oil polluted water of Ogoniland, river state, Nigeria. J. Appl. Life Sci. Int. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Rotondo, L.; Temporetti, P.; Mora, V.; Baffico, G.; Beamud, G.; Diaz, M.; Pedrozo, F. Effects of lake sediment contamination by PAHs on nutrients and phytoplankton in Vaca Muerta, Neuquén, Argentina. Environ. Earth Sci. 2021, 80, 1–13. [Google Scholar] [CrossRef]
- ATSDR. Toxicology Profile for Polyaromatic Hydrocarbons; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Wang, B.-R.; Dahms, H.-U.; Wu, M.-C.; Jhuo, N.-J.; Hsieh, C.-Y. After remediation–Using toxicity identification evaluation of sediment contamination in the subtropical Erren river basin. Chemosphere 2021, 262, 127772. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Raffa, C.M.; Chiampo, F.; Shanthakumar, S. Remediation of Metal/Metalloid-Polluted Soils: A Short Review. Appl. Sci. 2021, 11, 4134. [Google Scholar] [CrossRef]
- Hsieh, H.-Y.; Huang, K.-C.; Cheng, J.-O.; Lo, W.-T.; Meng, P.-J.; Ko, F.-C. Environmental effects on the bioaccumulation of PAHs in marine zooplankton in Gaoping coastal waters, Taiwan: Concentration, distribution, profile, and sources. Mar. Pollut. Bull. 2019, 144, 68–78. [Google Scholar] [CrossRef]
- Sonone, S.S.; Jadhav, S.; Sankhla, M.S.; Kumar, R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioSci. 2020, 10, 2148–2166. [Google Scholar] [CrossRef]
- Stamatelopoulou, A.; Dasopoulou, M.; Bairachtari, K.; Karavoltsos, S.; Sakellari, K.; Maggos, T. Contamination and Potential Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) and Heavy Metals in House Settled Dust Collected from Residences of Young Children. Appl. Sci. 2021, 11, 1479. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef] [PubMed]
- Dahms, H.-U.; Schizas, N.V.; James, R.A.; Wang, L.; Hwang, J.-S. Marine hydrothermal vents as templates for global change scenarios. Hydrobiologia 2018, 818, 1–10. [Google Scholar] [CrossRef]
- Yu, Z.; Yin, D.; Zhang, J. Sex-dependent effects of sulfamethoxazole exposure on pro-/anti-oxidant status with stimulation on growth, behavior and reproduction in the amphipod Hyalella azteca. Environ. Pollut. 2019, 244, 398–404. [Google Scholar] [CrossRef]
- USEPA. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates, 2nd ed.; USEPA: Duluth, MN, USA; Washington, DC, USA, 2000. [Google Scholar]
- USEPA. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States, National Sediment Quality Survey; Office of Science and Technology, Standards and Health Protection Divisio: Washington, DC, USA, 2004. [Google Scholar]
- USEPA. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures; United States Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2003. [Google Scholar]
- Vaquer-Sunyer, R.; Duarte, C.M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. USA 2008, 105, 15452–15457. [Google Scholar] [CrossRef] [Green Version]
- ASTM. Standard test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates. In ASTM Annual Book of Standards; ASTM: Philadelphia, PA, USA, 2010; p. E1706-05. [Google Scholar]
- King, A.; Readman, J.; Zhou, J. Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction–gas chromatography–mass spectrometry. Anal. Chim. Acta 2004, 523, 259–267. [Google Scholar] [CrossRef]
- Zhou, J.; Hong, H.; Zhang, Z.; Maskaoui, K.; Chen, W. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China. Water Res. 2000, 34, 2132–2150. [Google Scholar] [CrossRef]
- Maskaoui, K.; Zhou, J.; Hong, H.; Zhang, Z. Contamination by polycyclic aromatic hydrocarbons in the Jiulong River estuary and Western Xiamen Sea, China. Environ. Pollut. 2002, 118, 109–122. [Google Scholar] [CrossRef]
- Burto, G.A., Jr.; Nguyen, L.T.; Janssen, C.; Baudo, R.; McWilliam, R.; Bossuyt, B.; Beltrami, M.; Green, A. Field validation of sediment zinc toxicity. Environ. Toxicol. Chem. Int. J. 2005, 24, 541–553. [Google Scholar] [CrossRef]
- Ingersoll, C.; MacDonald, D.; Brumbaugh, W.; Johnson, B.T.; Kemble, N.; Kunz, J.; May, T.; Wang, N.; Smith, J.; Sparks, D. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in northwestern Indiana, USA. Arch. Environ. Contam. Toxicol. 2002, 43, 156–167. [Google Scholar] [CrossRef]
- Spencer, K.; Dewhurst, R.; Penna, P. Potential impacts of water injection dredging on water quality and ecotoxicity in Limehouse Basin, River Thames, SE England, UK. Chemosphere 2006, 63, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Besser, J.M.; Brumbaugh, W.G.; Ingersoll, C.G. Characterizing toxicity of metal-contaminated sediments from mining areas. Appl. Geochem. 2015, 57, 73–84. [Google Scholar] [CrossRef]
- Call, D.J.; Polkinghorne, C.N.; Markee, T.P.; Brooke, L.T.; Geiger, D.L.; Gorsuch, J.W.; Robillard, K.A. Silver toxicity to Chironomus tentans in two freshwater sediments. Environ. Toxicol. Chem. Int. J. 1999, 18, 30–39. [Google Scholar] [CrossRef]
- Mohammed, A. Why are early life stages of aquatic organisms more sensitive to toxicants than adults. New Insights Toxic. Drug Test. 2013, 49–62. [Google Scholar] [CrossRef] [Green Version]
Metal | Freshwater FCV |
---|---|
Cu | 0.960[e(0.8545[ln(hardness)]−1.465)] |
Pb | 0.791[e(1.273[ln(hardness)]−4.705)] |
Ni | 0.997[e(0.8460[ln(hardness)]+1.1645)] |
Zn | 0.986[e(0.8473[ln(hardness)]+0.7614)] |
Cd | CF [e(0.7852[ln(hardness)]−3.490] |
Compound | FCV (µg/L) | Compound | FCV (µg/L) |
---|---|---|---|
Acenaphthene | 55.85 | Chrysene | 2.042 |
Acenaphthylene | 306.9 | Dibenz[a,h]anthracene | 0.2825 |
Anthracene | 20.73 | Fluorene | 39.3 |
Benzo[a]anthracene | 2.227 | Fluoranthen | 7.109 |
Benzo[a]pyrene | 0.9573 | Indeno[1,2,3-c,d]pyrene | 0.275 |
Benzo[b]fluoranthene | 0.6774 | Phenanthrene | 19.13 |
Benzo[k]fluoranthene | 0.6415 | Pyrene | 10.11 |
Benzo[g,h,i]perylene | 0.4391 | Naphthalene | 193.55 |
Site | pH | Dissolved Oxygen (mg/L) | Conductivity (μmho/cm) | |||
---|---|---|---|---|---|---|
Initial | End | Initial | End | Initial | End | |
BK | 7.78 | 8.86 | 5.81 | 4.93 | 16 | 18 |
YS1 | 8.15 | 8.52 | 4.52 | 5.39 | 576 | 560 |
YS2 | 8.22 | 8.44 | 4.80 | 5.86 | 1090 | 1100 |
YS3 | 8.36 | 8.72 | 4.44 | 5.94 | 1040 | 1040 |
YS4 | 8.68 | 8.69 | 5.52 | 5.83 | 178 | 182 |
YS5 | 8.34 | 8.80 | 5.43 | 5.85 | 184 | 188 |
SY1 | 8.02 | 8.45 | 4.73 | 6.46 | 1990 | 1960 |
SY2 | 8.07 | 8.40 | 3.86 | 5.47 | 1670 | 1730 |
SY3 | 8.14 | 8.56 | 4.26 | 6.82 | 1210 | 1220 |
AGD1 | 8.30 | 8.61 | 2.70 | 6.36 | 77 | 73 |
AGD2 | 8.43 | 8.31 | 4.26 | 5.55 | 84 | 65 |
DB1 | 7.97 | 8.61 | 3.89 | 5.80 | 1560 | 1610 |
DB2 | 8.27 | 8.61 | 4.75 | 5.90 | 1710 | 1710 |
DB3 | 8.35 | 8.59 | 5.44 | 5.71 | 877 | 887 |
DB4 | 7.82 | 8.30 | 4.64 | 5.18 | 788 | 783 |
DB5 | 7.90 | 8.60 | 4.86 | 5.59 | 890 | 903 |
HJ1 | 7.81 | 8.41 | 2.04 | 5.89 | 85 | 92 |
HJ2 | 7.76 | 8.51 | 2.16 | 1.62 | 73 | 86 |
HJ3 | 8.29 | 8.30 | 1.73 | 1.26 | 78 | 80 |
HJ4 | 8.53 | 8.81 | 1.21 | 1.45 | 90 | 76 |
HJ5 | 7.89 | 7.84 | 2.28 | 1.29 | 74 | 106 |
HJ6 | 8.10 | 8.56 | 2.89 | 1.09 | 123 | 72 |
HJ7 | 8.14 | 8.80 | 1.25 | 1.56 | 1490 | 1690 |
LK1 | 8.39 | 8.36 | 4.42 | 5.69 | 83 | 56 |
LK2 | 8.40 | 8.47 | 4.40 | 5.64 | 67 | 56 |
LK3 | 8.36 | 8.50 | 4.46 | 5.47 | 92 | 83 |
WR1 | 8.48 | 8.55 | 3.47 | 5.83 | 133 | 105 |
WR2 | 8.19 | 7.89 | 4.22 | 5.56 | 48 | 50 |
WR3 | 8.57 | 8.71 | 4.28 | 5.83 | 79 | 69 |
WR4 | 8.38 | 8.23 | 4.30 | 5.52 | 65 | 50 |
WR5 | 8.48 | 8.20 | 5.25 | 6.14 | 116 | 107 |
WR6 | 8.10 | 8.39 | 3.87 | 5.37 | 102 | 86 |
DG1 | 7.62 | 8.40 | 1.04 | 1.20 | 680 | 660 |
DG2 | 8.07 | 8.35 | 1.21 | 1.29 | 21 | 24 |
DG3 | 8.25 | 8.71 | 2.19 | 1.73 | 54 | 37 |
DG4 | 8.02 | 8.72 | 2.33 | 1.26 | 20 | 24 |
Sites | ACE | ACY | ANTH | B[a]A | B[a]P | B[b]F | B[k]F | B[ghi]P | CHRY | D[ah]A | FLU | FLTH | IND | PHEN | PYR | NAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YS1 | ND | ND | ND | 6.686 | ND | ND | ND | ND | 0.988 | ND | ND | 0.178 | ND | ND | 0.084 | ND |
YS2 | ND | ND | 0.808 | 6.901 | ND | ND | ND | ND | ND | ND | ND | 0.174 | ND | ND | 0.088 | ND |
YS3 | ND | ND | 0.422 | 6.964 | ND | ND | ND | ND | ND | ND | ND | 0.193 | ND | ND | 0.096 | ND |
YS4 | ND | ND | 0.384 | 6.691 | ND | ND | ND | ND | 2.289 | ND | ND | 0.18 | ND | ND | 0.086 | ND |
YS5 | ND | ND | 0.93 | 6.687 | ND | ND | 0.007 | ND | 1.378 | ND | ND | 0.179 | ND | ND | 0.084 | ND |
SY1 | ND | ND | 0.671 | 6.691 | ND | ND | ND | ND | 1.238 | ND | ND | 0.261 | ND | ND | 0.086 | ND |
SY2 | ND | ND | 0.647 | ND | ND | ND | 0.001 | ND | ND | ND | ND | ND | ND | ND | 0.084 | ND |
SY3 | ND | ND | ND | 6.699 | ND | ND | ND | ND | 1.898 | ND | ND | 0.223 | ND | 2.764 | 0.096 | ND |
AGD1 | ND | ND | 0.794 | 7.329 | ND | ND | ND | ND | ND | ND | ND | 0.284 | ND | 0.282 | 0.088 | ND |
AGD2 | 0.139 | ND | 0.312 | ND | ND | ND | 0.001 | ND | ND | ND | 0.113 | 0.185 | ND | ND | 0.087 | ND |
DB1 | ND | ND | 0.364 | 6.882 | 0.168 | ND | ND | ND | 9.056 | ND | ND | 0.239 | ND | ND | ND | ND |
DB2 | ND | ND | 0.271 | 6.712 | ND | ND | ND | ND | 2.707 | ND | ND | 0.188 | ND | ND | 0.085 | ND |
DB3 | ND | ND | ND | 6.696 | ND | ND | 0.006 | ND | 0.682 | ND | ND | 0.179 | 0.87 | 5.717 | 0.084 | ND |
DB4 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.113 | 0.189 | 0.238 | 0.237 | 0.095 | ND |
DB5 | ND | ND | ND | 6.773 | ND | ND | 0.031 | ND | 4.026 | ND | ND | 0.215 | ND | ND | 0.106 | ND |
HJ1 | 0.155 | ND | 1.122 | 8.604 | ND | ND | 0.89 | ND | 90.095 | ND | 0.11 | 0.364 | ND | 0.575 | 0.09 | ND |
HJ2 | ND | ND | 0.997 | 7.189 | ND | ND | 0.059 | 0.08 | 1.935 | ND | ND | 0.179 | ND | ND | ND | ND |
HJ3 | 0.148 | ND | ND | 6.814 | ND | ND | 0.057 | ND | 7.37 | ND | 0.11 | 0.19 | ND | ND | 0.087 | ND |
HJ4 | ND | ND | 0.771 | ND | ND | ND | 0.001 | ND | ND | ND | 0.113 | 0.178 | ND | 0.243 | 0.093 | ND |
HJ5 | ND | ND | 0.32 | 6.925 | ND | ND | 0.144 | ND | 18.027 | ND | 0.117 | 0.226 | 0.242 | 0.274 | 0.085 | ND |
HJ6 | ND | ND | 0.534 | 6.707 | ND | ND | 0.015 | ND | 2.408 | ND | ND | 0.184 | ND | 0.234 | 0.086 | ND |
HJ7 | ND | ND | 0.232 | 7.71 | ND | ND | 0.382 | ND | 48.618 | ND | ND | 0.277 | ND | 0.351 | 0.089 | ND |
LK1 | ND | ND | 1.098 | 6.857 | ND | ND | 0.037 | ND | 5.022 | ND | ND | 0.185 | 0.238 | ND | 0.084 | ND |
LK2 | ND | ND | ND | ND | ND | ND | 0.001 | ND | ND | ND | ND | ND | ND | ND | 0.084 | ND |
LK3 | ND | ND | 0.201 | 44.305 | ND | ND | 0.165 | ND | 0.247 | ND | ND | 0.25 | ND | 0.312 | 0.089 | ND |
WR1 | ND | ND | 0.214 | 14.678 | 0.015 | ND | 3.782 | ND | 356.24 | ND | ND | 1.182 | ND | 2.531 | 0.115 | ND |
WR2 | ND | ND | 0.335 | ND | ND | ND | 0.224 | 0.455 | ND | ND | ND | 0.184 | ND | ND | ND | ND |
WR3 | ND | ND | 0.266 | 8.748 | ND | ND | ND | ND | ND | ND | ND | 0.218 | 0.249 | ND | 0.099 | ND |
WR4 | ND | ND | 0.394 | 6.901 | ND | ND | 0.093 | ND | 11.832 | ND | ND | 0.228 | ND | 0.242 | 0.099 | ND |
WR5 | ND | ND | 0.283 | 6.727 | ND | ND | ND | ND | 1.114 | ND | ND | 0.231 | ND | ND | 0.096 | ND |
WR6 | ND | ND | 0.56 | ND | ND | ND | ND | ND | 0.251 | ND | ND | 0.187 | ND | 0.217 | 0.087 | ND |
DG1 | ND | ND | 0.952 | ND | ND | ND | ND | ND | 0.253 | ND | ND | 0.22 | ND | ND | 0.085 | ND |
DG2 | 0.148 | ND | 0.782 | ND | ND | ND | 0.021 | ND | ND | ND | 0.11 | 1.084 | ND | ND | 0.092 | ND |
DG3 | ND | ND | 1.212 | ND | ND | ND | 0.001 | ND | ND | ND | 0.116 | 0.173 | ND | ND | 0.085 | ND |
DG4 | ND | ND | 0.563 | 36.811 | ND | ND | 0.154 | ND | 0.248 | ND | ND | 0.211 | ND | 0.289 | 0.086 | ND |
Sites | Cr | Ni | Cu | Zn | Pb |
---|---|---|---|---|---|
YS1 | 0.017 | ND | ND | 0.02 | ND |
YS2 | 0.045 | ND | ND | 0.164 | ND |
YS3 | 0.046 | ND | ND | 0.153 | ND |
YS4 | 0.005 | ND | ND | 0.102 | ND |
YS5 | 0.025 | ND | ND | 0.171 | ND |
DB1 | 0.019 | ND | ND | 0.249 | ND |
DB2 | ND | ND | ND | 0.027 | ND |
DB3 | 0.017 | ND | 0.007 | 0.431 | ND |
DB4 | 0.031 | ND | ND | 0.313 | ND |
DB5 | 0.038 | ND | ND | 0.939 | ND |
SY1 | 0.042 | ND | ND | 0.223 | ND |
SY2 | 0.212 | 0.029 | 0.01 | 0.554 | 0.005 |
SY3 | 0.183 | 0.022 | ND | 0.574 | ND |
AGD1 | ND | ND | ND | 1.034 | ND |
AGD2 | 0.025 | ND | ND | 0.878 | ND |
HJ1 | 0.009 | ND | ND | 0.065 | ND |
HJ2 | ND | ND | ND | 0.191 | ND |
HJ3 | ND | ND | ND | ND | ND |
HJ4 | ND | ND | 0.007 | 0.018 | ND |
HJ5 | ND | ND | ND | ND | ND |
HJ6 | ND | ND | ND | 0.023 | ND |
HJ7 | ND | ND | ND | ND | ND |
LK1 | 0.014 | 0.02 | 0.007 | 0.167 | ND |
LK2 | 0.149 | 0.185 | ND | 3.333 | ND |
LK3 | 0.029 | ND | ND | 0.594 | ND |
WR1 | ND | ND | ND | 0.159 | ND |
WR2 | ND | ND | ND | 0.041 | ND |
WR3 | 0.012 | ND | ND | 1.011 | ND |
WR4 | 0.036 | 0.256 | 0.126 | 3.609 | 0.045 |
WR5 | ND | ND | ND | 0.016 | ND |
WR6 | ND | ND | ND | 0.034 | ND |
DG1 | 0.007 | ND | ND | 0.123 | ND |
DG2 | 0.009 | ND | ND | 0.406 | 0.007 |
DG3 | 0.007 | ND | ND | 0.178 | ND |
DG4 | ND | ND | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.-Y.; Hsieh, C.-Y.; Dahms, H.-U.; Tseng, Y.-H.; Chen, J.; Wu, M.-C.; Kim, J.-H.; Liu, C.-H. Toxic Effects of Heavy Metals and Organic Polycyclic Aromatic Hydrocarbons in Sediment Porewater on the Amphipod Hyalella azteca and Zebrafish Brachydanio rerio Embryos from Different Rivers in Taiwan. Appl. Sci. 2021, 11, 8021. https://doi.org/10.3390/app11178021
Hu S-Y, Hsieh C-Y, Dahms H-U, Tseng Y-H, Chen J, Wu M-C, Kim J-H, Liu C-H. Toxic Effects of Heavy Metals and Organic Polycyclic Aromatic Hydrocarbons in Sediment Porewater on the Amphipod Hyalella azteca and Zebrafish Brachydanio rerio Embryos from Different Rivers in Taiwan. Applied Sciences. 2021; 11(17):8021. https://doi.org/10.3390/app11178021
Chicago/Turabian StyleHu, Shao-Yang, Chi-Ying Hsieh, Hans-Uwe Dahms, Yu-Hsien Tseng, Jesse Chen, Meng-Chun Wu, Jin-Hyoung Kim, and Cheng-Han Liu. 2021. "Toxic Effects of Heavy Metals and Organic Polycyclic Aromatic Hydrocarbons in Sediment Porewater on the Amphipod Hyalella azteca and Zebrafish Brachydanio rerio Embryos from Different Rivers in Taiwan" Applied Sciences 11, no. 17: 8021. https://doi.org/10.3390/app11178021
APA StyleHu, S. -Y., Hsieh, C. -Y., Dahms, H. -U., Tseng, Y. -H., Chen, J., Wu, M. -C., Kim, J. -H., & Liu, C. -H. (2021). Toxic Effects of Heavy Metals and Organic Polycyclic Aromatic Hydrocarbons in Sediment Porewater on the Amphipod Hyalella azteca and Zebrafish Brachydanio rerio Embryos from Different Rivers in Taiwan. Applied Sciences, 11(17), 8021. https://doi.org/10.3390/app11178021