Improvement of the Zienkiewicz–Zhu Error Recovery Technique Using a Patch Configuration
Abstract
:1. Introduction
2. Node Patch Zienkiewicz–Zhu (ZZ) Stress Error Recovery Technique
3. Element Patch Displacement Error Recovery Technique
4. Error Estimator and Adaptive Mesh Improvement
5. Elastic Plate Examples
5.1. Square Plate Example
5.2. Square Plate with a Circular Opening Example
5.3. Plastic Sheet under Stretching Process Problem
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cen, S.; Wu, C.J.; Li, Z.; Shang, Y.; Li, C. Some advances in high-performance finite element methods. Eng. Comput. 2019, 36, 2811–2834. [Google Scholar] [CrossRef]
- Gratsch, T.; Bathe, K. A posteriori error estimation technique in practical finite element analysis. Comput. Struct. 2005, 83, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, M.; Zhu, J.Z.; Craig, A.W.; Zienkiewicz, O.C. Analysis of the Zienkiewicz–Zhu a-posteriori error estimator in the finite element method. Int. J. Num. Meth. Eng. 1989, 28, 2161–2174. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Zhu, J.Z. The super-convergent patch recovery and a-posteriori error estimates, part i, the error recovery technique. Int. J. Num. Meth. Eng. 1992, 33, 1331–1364. [Google Scholar] [CrossRef]
- Rodenas, J.J.; Tur, M.; Fuenmayor, F.J.; Vercher, A. Improvement of the super-convergent patch recovery technique by the use of constraint equations: The SPR-C technique. Int. J. Num. Meth. Eng. 2007, 70, 705–727. [Google Scholar] [CrossRef]
- Wiberg, N.E.; Abdulwahab, F. Patch recovery based on super-convergent derivatives and equilibrium. Int. J. Num. Meth. Eng. 1990, 36, 2703–2724. [Google Scholar] [CrossRef]
- Blacker, T.; Belytschko, T. Super-convergent patch recovery with equilibrium and conjoint interpolant enhancements. Int. J. Num. Meth. Eng. 1994, 37, 517–536. [Google Scholar] [CrossRef]
- Li, X.D.; Wiberg, N.E. A Posteriori error estimate by element patch post-processing, adaptive analysis in energy and l2 norms. Comput. Struct. 1994, 53, 907–919. [Google Scholar] [CrossRef]
- Wiberg, N.E.; Abdulwahab, F.; Ziukas, S. Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int. J. Num. Meth. Eng. 1994, 37, 3417–3440. [Google Scholar] [CrossRef]
- Lee, T.; Park, H.C.; Lee, S.W. A super-convergent stress recovery technique with equilibrium constraint. Int. J. Num. Meth. Eng. 1997, 40, 1139–1160. [Google Scholar] [CrossRef]
- Park, H.C.; Shin, S.H.; Lee, S.W. A super-convergent stress recovery technique for accurate boundary stress extraction. Int. J. Num. Meth. Eng. 1999, 45, 1227–1242. [Google Scholar] [CrossRef]
- Maunder, E.A.W.; Trefftz, A. Patch recovery method for smooth stress resultants and applications to Reissner–Mindlin equilibrium plate models. Comput. Assist. Mech. Eng. Sci. 2001, 8, 409–424. [Google Scholar]
- Rodenas, J.J.; Estrada, G.; Andres, O.; Fuenmayor, F.J.; Chinesta, F. Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM. Comput. Mech. 2013, 52, 321–344. [Google Scholar] [CrossRef]
- Nadal, E.; D´ıez, P.; R´odenas, J.J.; Tur, M.; Fuenmayor, F.J. A recovery-explicit error estimator in energy norm for linear elasticity. Comput. Methods Appl. Mech. Eng. 2015, 287, 172–190. [Google Scholar] [CrossRef] [Green Version]
- Ülkü, H.; Karaköse, C.; Askes, H. A recovery-type a posteriori error estimator for gradient elasticity. Comput. Struct. 2015, 154, 204–209. [Google Scholar]
- Gu, H.; Zong, Z.; Hung, K.C. A modified super-convergent patch recovery method and its application to large deformation problems. Finite Elem. Anal. Des. 2004, 40, 665–687. [Google Scholar] [CrossRef]
- Zhang, Z.; Naga, A. A new finite element gradient recovery method: Superconvergence property. SIAM J. Sci. Comput. 2005, 26, 1192–1213. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Yi, N. The super-convergent cluster recovery method. J. Sci. Comput. 2010, 44, 301–322. [Google Scholar] [CrossRef]
- Ahmed, M.; Singh, D.; Islam, S. Effect of contact conditions on adaptive finite element simulation of sheet forming operations. Eur. J. Comput. Mech. 2015, 24, 1–15. [Google Scholar] [CrossRef]
- Boo, S.-H.; Kim, J.-G.; Lee, P.-S. Error estimation for the automated multi-level sub-structuring method. Int. J. Numer. Meth. Eng. 2016, 106, 927–950. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z. Three-dimensional super-convergent gradient recovery on tetrahedral meshes. Int. J. Numer. Meth. Eng. 2016, 108, 819–838. [Google Scholar] [CrossRef]
- Cai, D.; Cai, Z. A hybrid a posteriori error estimator for conforming finite element approximations. Comput. Methods Appl. Mech. Eng. 2018, 339, 320–340. [Google Scholar] [CrossRef]
- Sharma, R.; Zhang, J.; Langelaar, M.; van Keulen, F.; Aragón, A.M. An improved stress recovery technique for low-order 3D finite elements. Int. J. Numer. Methods Eng. 2018, 114, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Yuan, S.; Xing, Q. Adaptive finite element analysis with local mesh refinement based on a posteriori error estimate of element energy projection technique. Eng. Comput. 2019, 36, 2010–2033. [Google Scholar] [CrossRef]
- Ahmed, M. A Comparative study of mesh-free radial point interpolation method and moving least squares method-based error estimation in elastic finite element analysis. Arab. J. Sci. Eng. 2020, 45, 3541–3557. [Google Scholar] [CrossRef]
- Ahmed, M.; Singh, D. An adaptive parametric study on mesh refinement during adaptive finite element simulation of sheet forming operations. Turk. J. Eng. Environ. Sci. 2008, 13, 1–13. [Google Scholar]
Mesh Size (1/h) | FEM Error (×10−3) | ZZ (Standard Patch) | ZZ (Modified Patch) | LS (Modified Patch) | |||
---|---|---|---|---|---|---|---|
Error (Stress) (×10−3) | Effectivity | Error (Stress) (×10−3) | Effectivity | Error (Displacement) (×10−3) | Effectivity | ||
1/4 | 93.7491 | 144.2486 | 1.4313 | 50.5738 | 0.97347 | 58.4784 | 0.929995 |
1/16 | 24.4409 | 22.6413 | 1.2449 | 3.2715 | 0.98795 | 4.4621 | 0.989587 |
1/32 | 12.2480 | 8.29942 | 1.14508 | 1.0301 | 0.99498 | 1.1581 | 0.997014 |
Rate of Conv. | 0.97875 | 1.37313 | 1.87252 | 1.88603 |
Mesh | FEM Error (×10−3) | ZZ (Standard Patch) | ZZ (Modified Patch) | LS (Modified Patch) | ||||
---|---|---|---|---|---|---|---|---|
Elem. | Dof | Error (Stress) (×10−3) | Effectivity | Error (Stress) (×10−3) | Effectivity | Error (Displacement) (×10−3) | Effectivity | |
88 | 118 | 50.1775 | 62.0040 | 1.39816 | 11.2714 | 0.97133 | 21.9027 | 0.97577 |
395 | 454 | 21.7763 | 18.3460 | 1.22994 | 2.4864 | 0.99156 | 8.4368 | 0.97830 |
1978 | 2106 | 9.2888 | 5.3814 | 1.12589 | 0.7161 | 0.99821 | 0.8934 | 0.99580 |
Mesh Size (1/h) | FEM Error (×10−3) | ZZ (Standard Patch) | ZZ (Modified Patch) | LS (Modified Patch) | |||
---|---|---|---|---|---|---|---|
Error (Stress) (×10−3) | Effectivity | Error (Stress) (×10−3) | Effectivity | Error (Displacement) (×10−3) | Effectivity | ||
1/4 | 13.1683 | 4.9321 | 0.95024 | 9.7741 | 1.10601 | 12.2577 | 1.25556 |
1/12 | 1.51492 | 0.29653 | 0.95295 | 0.25279 | 0.97335 | 0.52885 | 1.04045 |
1/24 | 0.3802 | 0.0553 | 0.95729 | 0.0316 | 0.98134 | 0.0698 | 1.01265 |
Rate of Conv. | 1.97848 | 2.50622 | 3.19768 | 2.88449 |
Mesh | FEM Error (×10−3) | ZZ (Standard Patch) | ZZ (Modified Patch) | LS (Modified Patch) | ||||
---|---|---|---|---|---|---|---|---|
Elem. | Dof | Error (Stress) $(×10−3) | Effectivity | Error (Stress) (×10−3) | Effectivity | Error (Displacement) (×10−3) | Effectivity | |
88 | 410 | 3.4529 | 1.4263 | 0.93743 | 1.3562 | 0.92285 | 2.8478 | 1.24041 |
395 | 1696 | 0.7502 | 0.2302 | 0.95072 | 0.1300 | 0.95475 | 0.6746 | 1.09216 |
925 | 3876 | 0.3190 | 0.0965 | 0.95235 | 0.0468 | 0.96886 | 0.0775 | 1.02221 |
Mesh Size (1/h) | FEM Error (×10−3) | ZZ (Standard Patch) | ZZ (Modified Patch) | LS (Modified Patch) | |||
---|---|---|---|---|---|---|---|
Error (Stress) (×10−3) | Effectivity | Error (Stress) (×10−3) | Effectivity | Error (Displacement) (×10−3) | Effectivity | ||
1/4 | 60.2610 | 19.0382 | 1.09566 | 55.5321 | 1.39422 | 13.6672 | 1.08099 |
1/16 | 15.0154 | 2.1981 | 1.01340 | 1.7520 | 1.01266 | 0.8131 | 1.00512 |
1/32 | 7.5071 | 0.6082 | 1.00390 | 0.4174 | 1.00322 | 0.2031 | 1.00127 |
Rate of Conv. | 1.00169 | 1.65603 | 2.35230 | 2.02723 |
Mesh | FEM Error (×10−3) | ZZ (Standard Patch) | ZZ (Modified Patch) | LS (Modified Patch) | ||||
---|---|---|---|---|---|---|---|---|
Elem. | Dof | Error (Stress) (×10−3) | Effectivity | Error (Stress) (×10−3) | Effectivity | Error (Displacement) (×10−3) | Effectivity | |
99 | 238 | 28.4543 | 13.0304 | 1.05646 | 6.079 | 1.03387 | 10.6720 | 1.12167 |
455 | 1002 | 10.9201 | 1.6531 | 1.00757 | 1.100 | 1.00726 | 4.2731 | 1.07592 |
1945 | 4066 | 6.117 | 0.8072 | 1.00343 | 0.4161 | 1.00153 | 0.6504 | 1.00492 |
Mesh | FEM Error (×10−3) | ZZ (Standard Patch) | ZZ (Modified Patch) | LS (Modified Patch) | ||||
---|---|---|---|---|---|---|---|---|
Elem. | Dof | Error (Stress) (×10−3) | Effectivity | Error (Stress) (×10−3) | Effectivity | Error (Displacement) (×10−3) | Effectivity | |
166 | 202 | 10.232 | 9.197 | 0.99926 | 7.093 | 0.93243 | 7.589 | 0.91881 |
355 | 404 | 7.326 | 6.068 | 1.06652 | 3.980 | 0.91516 | 4.339 | 0.91687 |
1002 | 1084 | 4.048 | 3.122 | 1.08850 | 1.605 | 0.92551 | 1.742 | 0.92674 |
Mesh | FEM Error (×10−3) | ZZ (Standard Patch) | ZZ (Modified Patch) | LS (Modified Patch) | ||||
---|---|---|---|---|---|---|---|---|
Elem. | Dof | Error (Stress) (×10−3) | Effectivity | Error (Stress) (×10−3) | Effectivity | Error (Displacement) (×10−3) | Effectivity | |
68 | 318 | 2.391 | 1.845 | 0.83612 | 3.389 | 1.41650 | 8.194 | 3.29350 |
131 | 588 | 1.698 | 1.363 | 0.67366 | 1.630 | 0.90573 | 4.559 | 2.56915 |
355 | 1516 | 1.495 | 1.247 | 0.56854 | 1.332 | 0.73770 | 3.133 | 1.96228 |
Mesh | FEM Error (×10−3) | ZZ (Standard Patch) | ZZ (Modified Patch) | LS (Modified Patch) | ||||
---|---|---|---|---|---|---|---|---|
Elem. | Dof | Error (Stress) (×10−3) | Effectivity | Error (Stress) (×10−3) | Effectivity | Error (Displacement) (×10−3) | Effectivity | |
188 | 430 | 5.206 | 2.853 | 0.93465 | 3.521 | 0.99604 | 4.123 | 1.05608 |
358 | 786 | 4.070 | 1.878 | 0.94003 | 2.049 | 0.96181 | 2.615 | 1.06141 |
1217 | 2558 | 2.367 | 1.536 | 0.87953 | 1.349 | 0.83577 | 1.628 | 0.88195 |
Elem. Types | Mesh | FEM Error | ZZ-Stress (Standard Patch) | ZZ-Stress (Modified Patch) | LS-Displacement (Modified Patch) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Dof | Error | N | Dof | Error | N | Dof | Error | N | Dof | ||
Triangular Elements | 88 | 118 | 20.89 | 31.20 | 5696 | 5435 | 20.11 | 2861 | 3034 | 21.64 | 3247 | 3432 |
395 | 454 | 9.07 | 11.36 | 3445 | 3670 | 8.93 | 2613 | 2786 | 9.38 | 2638 | 2808 | |
Quadrilateral Elements | 99 | 238 | 11.84 | 12.79 | 1271 | 2666 | 12.01 | 1280 | 2682 | 13.07 | 1797 | 3740 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.; Singh, D.; AlQadhi, S.; Alrefae, M.A. Improvement of the Zienkiewicz–Zhu Error Recovery Technique Using a Patch Configuration. Appl. Sci. 2021, 11, 8120. https://doi.org/10.3390/app11178120
Ahmed M, Singh D, AlQadhi S, Alrefae MA. Improvement of the Zienkiewicz–Zhu Error Recovery Technique Using a Patch Configuration. Applied Sciences. 2021; 11(17):8120. https://doi.org/10.3390/app11178120
Chicago/Turabian StyleAhmed, Mohd., Devinder Singh, Saeed AlQadhi, and Majed A. Alrefae. 2021. "Improvement of the Zienkiewicz–Zhu Error Recovery Technique Using a Patch Configuration" Applied Sciences 11, no. 17: 8120. https://doi.org/10.3390/app11178120
APA StyleAhmed, M., Singh, D., AlQadhi, S., & Alrefae, M. A. (2021). Improvement of the Zienkiewicz–Zhu Error Recovery Technique Using a Patch Configuration. Applied Sciences, 11(17), 8120. https://doi.org/10.3390/app11178120