A Review on Potential Antimutagenic Plants of Saudi Arabia
Abstract
:1. Introduction
Search Method
2. How Does Oxidative Stress Contribute to Mutation?
3. What Is the Role of Antioxidants in Mutagenic Complications?
4. What Is the Role of Virus in Oxidative Stress and Mutations?
5. What Are the Strategies for Minimizing Mutagenic Complications?
6. How Can Plants Be Used as Preventive Medicine in Mutagenic Complications?
7. Which Are the Medicinal Plants of Saudi Arabia That Might Demonstrate Anti-Mutagenesis?
7.1. Teucrium oliverium
7.2. Alhagi maurorum
7.3. Echium arabicum
7.4. Ducrosia anethifolia
7.5. Chenopodium murale
7.6. Heliotropium ramosissimum
7.7. Conyza dioscordis
7.8. Cleome droserifolia
7.9. Euphorbia schimperiana
7.10. Origanum syriacum
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Drakvik, E.; Altenburger, R.; Aoki, Y.; Backhaus, T.; Bahadori, T. Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ. Int. 2020, 134, 105267. [Google Scholar] [CrossRef]
- Munnia, A.; Giese, R.W.; Polvani, S.; Galli, A.; Cellai, F.; Peluso, M.E. Bulky DNA Adducts, Tobacco Smoking, Genetic Susceptibility, and Lung Cancer Risk. Adv. Clin. Chem. 2017, 81, 231–277. [Google Scholar]
- Matthew, D.W.; Fradet-Turcotte, A. Virus DNA Replication and the Host DNA Damage Response. Ann. Rev. Virol. 2018, 5, 141–164. [Google Scholar]
- Cellai, F.; Capacci, F.; Sgarrella, C.; Poli, C.; Arena, L.; Tofani, L.; Giese, R.W.; Peluso, M.A. Cross-Sectional Study on 3-(2-Deoxy-d-Erythro-Pentafuranosyl) Pyrimido[1,2-Purin-10(3H)-One Deoxyguanosine Adducts among Woodworkers in Tuscany, Italy. Int. J. Mol. Sci. 2019, 20, 2763. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.P.; Bozinovski, S. Acquired somatic mutations in the molecular pathogenesis of COPD. Trends Pharmacol. Sci. 2003, 24, 71–76. [Google Scholar] [CrossRef]
- Baer, C.F.; Miyamoto, M.M.; Denver, D.R. Mutation rate variation in multicellular eukaryotes: Causes and consequences. Natl. Rev. Genet. 2007, 8, 619–631. [Google Scholar] [CrossRef]
- Bae, T.; Tomasini, L.; Mariani, J.; Zhou, B.; Roychowdhury, T.; Franjic, D. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 2018, 359, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Arvanitis, D.A.; Flouris, G.A.; Spandidos, D.A. Genomic rearrangements on VCAM1, SELE, APEG1 and AIF1 loci in atherosclerosis. J. Cell. Mol. Med. 2005, 9, 153–159. [Google Scholar] [CrossRef]
- Andreassi, M.G. Coronary atherosclerosis and somatic mutations: An overview of the contributive factors for oxidative DNA damage. Mutat. Res. 2003, 543, 67–86. [Google Scholar] [CrossRef]
- Gershenson, S.M. Viruses as environmental mutagenic factors. Mutat. Res. 1986, 167, 203–213. [Google Scholar] [CrossRef]
- Gershenzon, S.M. Do viruses participate in the origin of group outbursts of gene mutations occurring in natural Drosophila populations? Tsitol. Genet. 1998, 32, 94–102. [Google Scholar]
- Shruthi, S.; Vijayalaxmi, K.K. Antigenotoxic effects of a polyherbal drug septilin against the genotoxicity of cyclophosphamide in mice. Toxicol. Rep. 2016, 3, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Adepu, A.; Narala, S.; Ganji, A.; Chilvalvar, S. A review on natural plant: Aerva lanata. Int. J. Pharm. Sci. 2013, 3, 398–402. [Google Scholar]
- Formation of Free Radicals from Different Sources. 2020. Available online: https://maeterna.com/the-truth-what-are-antioxidants-free-radicals/ (accessed on 18 April 2021).
- Marnett, L.J. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002, 181, 219–222. [Google Scholar] [CrossRef]
- Adam-Vizi, V. Production of reactive oxygen species in brain mitochondria: Contribution by electron transport chain and non-electron transport chain sources. Antioxid. Redox Signal. 2005, 7, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Avery, S.V. Molecular targets of oxidative stress. Biochem. J. 2011, 434, 201–210. [Google Scholar]
- Hamanishi, T.; Furuta, H.; Kato, H.; Doi, A.; Tamai, M.; Shimomura, H.; Sakagashira, S.; Nishi, M.; Sasaki, H.; Sanke, T.; et al. Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes 2004, 53, 2455–2460. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wen, J.; Liu, J.; Li, L. The roles of free radicals in amyotrophic lateral sclerosis: Reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. FASEB J. 1999, 13, 2318–2328. [Google Scholar] [CrossRef]
- Kong, G.K.; Miles, L.A.; Crespi, G.A.N.; Morton, C.J.; Ng, H.L. Copper binding to the Alzheimer’s disease amyloid precursor protein. Eur. Biophys. J. 2008, 37, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Roth, E.F., Jr.; Ruprecht, R.M.; Schulman, S.; Vandersberg, J.; Olson, J.A. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate deficient human erythrocytes infected with Plasmodium falciparum. J. Clin. Investig. 1986, 77, 1129–1235. [Google Scholar] [CrossRef]
- Goldstein, I.M.; Kaplan, H.B.; Edelson, H.S.; Weissmann, G. Ceruloplasmin: An acute phase reactant that scavenges oxygen-derived free radicals. Ann. New York Acad. Sci. 1982, 389, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Gongora, M.C.; Harrison, D.G. Sad heart from no SOD. Hypertension 2008, 51, 28–30. [Google Scholar] [CrossRef] [Green Version]
- Souliotis, V.L.; Vlachogiannis, N.I.; Pappa, M.; Argyriou, A.; Ntouros, P.A.; Sfikakis, P.P. DNA Damage Response and Oxidative Stress in Systemic Autoimmunity. Int. J. Mol. Sci. 2020, 21, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lightfoot, T.J.; Skibola, C.F.; Smith, A.G.; Forrest, M.S. Polymorphisms in the oxidative stress genes superoxide dismutase, glutathione peroxidase and catalase and risk of non-Hodgkin’s lymphoma. Haematologica 2006, 91, 1222–1227. [Google Scholar] [PubMed]
- Lubos, E.; Handy, D.E.; Loscalzo, J. Role of oxidative stress and nitric oxide in atherothrombosis. Front. Biosci. 2008, 13, 5323–5344. [Google Scholar] [CrossRef] [Green Version]
- Nakabeppu, Y.; Kajitani, K.; Sakamoto, K.; Yamaguchi, H.; Tsuchimoto, D. MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair 2006, 5, 761–772. [Google Scholar] [CrossRef]
- Monteiro, H.P.; Winterbourn, C.C. Release of iron from ferritin by divicine, isouramil, acid-hydrolyzed vicine, and dialuric acid and initiation of lipid peroxidation. Arch. Biochem. Biophys. 1989, 271, 536–545. [Google Scholar] [CrossRef]
- Thorpe, G.W.; Fong, C.S.; Alic, N.; Higgins, V.J.; Dawes, I.W. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: Oxidative-stress-response genes. Proc. Natl. Acad. Sci. USA 2004, 101, 6564–6569. [Google Scholar] [CrossRef] [Green Version]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Homocysteine and glutathione peroxidase-1. Antioxid. Redox Signal. 2007, 9, 1923–1940. [Google Scholar] [CrossRef] [PubMed]
- Saez, G.T.; Estan-Capell, N. Antioxidant enzymes. In Encyclopaedia of Cancer; Schwab, M., Ed.; Springer: Berlin, Germany, 2014. [Google Scholar]
- Devasangayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidant in human health: Current status and future prospects. J. Assoc. Physicians India 2004, 52, 794–804. [Google Scholar]
- Orrell, R.W. Amyotrophic lateral sclerosis: Copper/zinc superoxide dismutase (SOD1) gene mutations. Neuromuscul. Disord. 2000, 10, 63–68. [Google Scholar] [CrossRef]
- Furukawa, Y.; Torres, A.S.; O’Halloran, T.V. Oxygen-induced maturation of SOD1: A key role for disulfide formation by the copper chaperone CCS. Eur. Mol. Biol. Organ. J. 2004, 23, 2872–2881. [Google Scholar] [CrossRef] [PubMed]
- Crystal, R.G. Oxidants and antioxidants. Am. J. Med. 1991, 91, 3S–10S. [Google Scholar]
- Tomas-Barberan, F.A.; Robins, R.J. Phytochemistry of Fruits and Vegetables; Calendon Press: New York, NY, USA, 1997. [Google Scholar]
- Ahuja, R.; Jamal, A.; Nosrati, N. Human oncogenic viruses and cancer. Curr. Sci. 2014, 107, 768–785. [Google Scholar]
- Herzer, K.; Gerken, G.; Hofmann, T.G. Hepatitis Cassociated liver carcinogenesis: Role of PML nuclear bodies. World J. Gastroenterol. 2014, 20, 12367. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, Y.; Fuchs, B.C.; Bardeesy, N. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J. Hepatol. 2014, 61, S79–S90. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Park, Y.S.; Lee, J.H. Features of gastric carcinoma with lymphoid stroma associated with Epstein-Barr virus. Clin. Gastroenterol. Hepatol. 2015, 13, 1738–1744. [Google Scholar] [CrossRef] [Green Version]
- Schiller, J.T.; Lowy, D.R. Virus infection and human cancer: An overview. Recent Results Cancer Res. 2014, 193, 1–10. [Google Scholar] [PubMed]
- Sxevik, M. Oncogenic viruses and mechanisms of oncogenesis. Turk. J. Vet. Anim. Sci. 2012, 36, 323–329. [Google Scholar]
- Macarthur, M.; Hold, G.L.; El-Omar, E.M. Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G515–G520. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, W.; Song, J. Hepatitis B virus X protein induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol. Cell Biol. 2013, 33, 2810–2816. [Google Scholar] [CrossRef] [Green Version]
- Moriel, P.; Plavnik, F.L.; Zazella, M.T.; Bertolami, M.C.; Abdalla, D.S.P. Lipid peroxidation and antioxidants in hyperlipidemia and hypertension. Biol. Res. 2000, 33, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Słoczynska, K.; Powroznik, B.; Pękala, E. Antimutagenic compounds and their possible mechanisms of action. J. Appl. Genet. 2014, 55, 273–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Wahhab, M.A.; Ahmed, H.H. Protective effect of Korean Panax ginseng against chromium VI toxicity and free radicals generation in rats. J. Ginseng Res. 2004, 28, 11–17. [Google Scholar]
- Li, J.; Yu, H.; Wang, S. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism. Drug Des. Dev. Ther. 2018, 12, 121–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edenharder, R.; Worf-Wandelburg, A.; Decker, M.; Platt, K.L. Antimutagenic effects and possible mechanisms of action of vitamins and related compounds against genotoxic heterocyclic amines from cooked food. Mutat. Res. 1999, 444, 235–248. [Google Scholar] [CrossRef]
- de Oliveira, M.R. The neurotoxic effects of vitamin A and retinoids. Ann. Braz. Acad. Sci. 2015, 87, 1361–1373. [Google Scholar] [CrossRef] [Green Version]
- Naziroglu, M.; Cay, M. Protective role of intraperitoneally administered vitamin E and selenium on the oxidative defense mechanisms in rats with diabetes induced by streptozotocin. Biol. Trace Elem. Res. 2011, 79, 149–159. [Google Scholar] [CrossRef]
- Rabbani, S.I.; Devi, K.; Khanam, S. Role of Pioglitazone with Metformin or Glimepiride on Oxidative Stress-induced Nuclear Damage and Reproductive Toxicity in Diabetic Rats. Malays. J. Med. Sci. 2010, 17, 3–11. [Google Scholar]
- Alpsoy, L.; Yildirim, A.; Agar, G. The antioxidant effects of vitamin A, C, and E on aflatoxin B1-induced oxidative stress in human lymphocytes. Toxicol. Ind. Health 2009, 25, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Sarma, L.; Kesavan, P.C. Protective effect of vitamin C and E against gamma-ray induced chromosomal damage in mouse. Int. J. Radiat. Biol. 1993, 759, 339–345. [Google Scholar]
- Konapacka, M.; Widel, M.; Rzeszowska-Wolny, J. Modifying effect of vitamins C, E and beta-carotene against gamma-ray-induced DNA damage in mouse cells. Mutat. Res. 1998, 417, 85–91. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action and potential applications. Complim. Rev. Food Saf. 2011, 10, 221–246. [Google Scholar] [CrossRef]
- Nayeem, N.; Asdaq, S.M.; Alamri, A.S.; Alsanie, W.F.; Alhomrani, M.; Mohzari, Y.; Alrashed, A.A.; Alotaibi, N.; Alharbi, M.A.; Aldhawyan, N.N.; et al. Wound healing potential of Dodonaea viscosa extract formulation in experimental animals. J. King Saud Univ. Sci. 2021, 33, 101476. [Google Scholar] [CrossRef]
- Esposito, E.; Ratilio, D.; Di Matteo, V.; Di Glulia, C.; Cicchino, M.; Algeri, S. A review on specific dietary antioxidant and the effects on biochemical mechanism related to neurodegenerative processes. Neurobiol. Aging 2002, 23, 719–735. [Google Scholar] [CrossRef]
- Chulasiri, M.; Bunyapraphatsara, N.; Moonkarndi, P. Mutagenicity and antimutagenicity of hispidulin and hortensin, the flavonoids from Millingtonia hortensis L. Environ. Mol. Mutagenesis 1992, 20, 307–312. [Google Scholar] [CrossRef]
- Sharma, R.; Singh, B.; Singh, D.; Chandrawat, P. Ethnomedicinal, pharmacological properties and chemistry of some medicinal plants of Boraginaceae in India. J. Med. Plant Res. 2009, 3, 1153–1175. [Google Scholar]
- Arshadullah, M.; Rasheed, M.; Mahmood, I.A. Niazboo (Ocimum basilicum) as medicinal plant establishes against salinity and sodicity. Adv. Biotechnol. Microbiol. 2019, 15, 1–8. [Google Scholar]
- Geetha, T.; Garg, A.; Chopra, K.; Kaur, I.P. Delineation of antimutagenic activity of catechin, epicatechin and green tea extract. Mutat. Res. 2004, 556, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Soudamini, K.K.; Unnikrishnan, M.C.; Sukumaran, K.; Kuttan, R. Mutagenicity and antimutagenicity of some selected spices. Indian J. Physiol. Pharmacol. 1995, 39, 347–353. [Google Scholar]
- Kuo, M.; Lee, K.; Lin, J. Genotoxicities of nitropyrenes and their modulation by apigenin, tannic acid, ellagic acid and indole-3-carbinol in the Salmonella and CHO systems. Mutat. Res. 1992, 270, 87–95. [Google Scholar] [CrossRef]
- Ali, A.; Akhtar, N.; Khan, B.A.; Khan, M.S. Acacia nilotica: A plant of multipurpose medicinal uses. J. Med. Plant Res. 2012, 6, 1492–1496. [Google Scholar]
- Khalaf, I.A. Antimutagenic effect of carrot (Daucus carota) on induction of streptomycin and rifampicin resistant mutants in bacterial systems. Mesop. J. Agric. 2008, 36, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhangxin, Y.U.; Wang, C.; Chongming, W.U.; Go, P.; Wei, J. Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants. Molecules 2018, 23, 342. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Weng, X.; Wu, H.; Li, Q.; Bi, K. Antioxidants from a Chinese medicinal herb—Psoralea corylifolia L. Food Chem. 2005, 91, 287–292. [Google Scholar]
- Wall, M.E.; Wani, M.C.; Manukumar, G.; Hughes, T.J. Plant antimutagenic agents, 3. Coumarins. J. Nat. Prod. 1988, 51, 1148–1152. [Google Scholar] [CrossRef]
- Shankel, D.M.; Pillai, S.P.; Telidepalli, H.; Menon, S.R.; Pillai, C.A.; Mitsche, L.A. Role of antimutagenic/anticarcinogens in cancer prevention. BioFactors 2000, 12, 113–121. [Google Scholar] [CrossRef]
- Geetha, T.; Saini, A.; Kaur, I.P. Ginseng extract exhibits antimutagenic activity against induced mutagenesis in various strains of Salmonella typhimurium. Indian J. Exp. Biol. 2006, 44, 838–841. [Google Scholar] [PubMed]
- Monache, F.D.; MacQuhae, M.M.; Monache, G.D.; Bettolo, G.B.M.; De Lima, R.A. Xanthones, xanthonolignoids and other constituents of the roots of Vismia guaramirangae. Phytochemistry 1983, 22, 227–232. [Google Scholar] [CrossRef]
- Rabbani, S.I.; Devi, K.; Khanam, S.; Zahra, N. Citral, a component of lemongrass oil inhibits the clastogenic effect of nickel chloride in mouse micronucleus test system. Pak. J. Pharm. Sci. 2006, 19, 108–113. [Google Scholar]
- Mossa, S.; AI-Yahya, M.A.; AI-Meshal, I.A. Medicinal Plants of Saudi Arabia; King Fahad National Library Publication: Riyadh, Saudi Arabia, 2000; Volume 2, pp. 1–355. [Google Scholar]
- Alfarhan, A.H.; Chaudhary, S.A.; Thomas, J. Notes on the flora of Saudi Arabia. J. King Saud Univ. 1998, 10, 31–40. [Google Scholar]
- Abdallah, E.M.; El-Ghazali, G. Screening for antimicrobial activity of some plants from Saudi folk medicine. Glob. J. Res. Med. Plants Indig. Med. 2013, 2, 210–218. [Google Scholar]
- Al-Sodany, Y.M.; Bazaid, S.A.; Mosallam, H.A. Medicinal plants in Saudi Arabia: I. Sarrwat Mountains at Taif, KSA. Acad. J. Plant Sci. 2013, 6, 134–145. [Google Scholar]
- El-Ghazali, G.E.; Al-Khalifa, K.S.; Saleem, G.A.; Abdallah, E.M. Traditional medicinal plants indigenous to Al-Rass province, Saudi Arabia. J. Med. Plants Res. 2010, 4, 2680–2683. [Google Scholar]
- Al-asmari, A.; Manthiri, R.A.; Abdo, N.; AL-duaiji, F.A.; Khan, H.A. Saudi medicinal plants for the treatment of scorpion sting envenomation. Saudi J. Biol. Sci. 2017, 24, 1204–1211. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Sattar, E.; Harraz, F.M.; Al-Ansari, S.M.A.; El-Mekkawy, S.; Ichino, C.; Kiyohara, H. Antiplasmodial and antirypanosomal activity of plants from the Kingdom of Saudi Arabia. J. Nat. Med. 2009, 63, 232–239. [Google Scholar] [CrossRef]
- Alkofahi, A.; Atta, A.H. Pharmacological screening of the anti-ulcerogenic effects of some Jordanian medicinal plants in rats. J. Ethnopharmacol. 1999, 67, 341–345. [Google Scholar] [CrossRef]
- Al-Saleem, M.S.; Al-Wahaibi, L.H.; Abdel-Mageed, W.M.; Gouda, Y.G.; Sayed, H.M. Antioxidant flavonoids from Alhagi maurorum with hepatoprotective effect. Pharmacogn. Mag. 2019, 15, 592–599. [Google Scholar]
- Muhammad, G.; Hussain, M.A.; Anwar, F.; Ashraf, M.; Gilani, A.H. Alhagi: A plant genus rich in bioactives for pharmaceuticals. Phytother. Res. 2015, 29, 1–13. [Google Scholar] [CrossRef]
- Ahmad, S.; Riaz, M.; Saleem, M. Antioxidant flavonoids from Alhagi maurorum. J. Asian Nat. Prod. 2010, 12, 138–143. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Radjabian, T.; Taghizadeh, M. Antioxidant Activity, Phenolic and Flavonoid Contents of Echium Species from Different Geographical Locations of Iranian. J. Medincal Plants Prod. 2013, 2, 23–31. [Google Scholar]
- Kuete, V.; Wiench, B.; Alsaid, M.S.; Alyahya, M.A.; Fankam, A.G.; Shahat, A.A. Cytotoxicity, mode of action and antibacterial activities of selected Saudi Arabian medicinal plants. BMC Complement. Altern. Med. 2013, 13, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Boersch, M.; Nagarajan, A.; Davey, A.K. Antioxidant and reported ethnomedicinal use of the genus Echium. Antioxidants 2020, 9, 722. [Google Scholar] [CrossRef] [PubMed]
- Elsharkawy, E.R.; Abdallah, E.M.; Shiboob, M.H.; Alghanem, S. Phytochemical, antioxidant and antibacterial potential of Ducrosia anethifolia in northern border region of Saudi Arabia. J. Pharm. Res. Int. 2019, 31, 1–6. [Google Scholar] [CrossRef]
- Mottaghipisheh, J.; Nové, M.; Spengler, G.; Kúsz, N.; Hohmann, J.; Csupor, D. Antiproliferative and cytotoxic activities of furocoumarins of Ducrosia anethifolia. Pharm. Biol. 2018, 56, 658–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majrashi, A.; Khandaker, M.M. Survey of chenopodiaceae family from Taif, Saudi Arabia. Plant Arch. 2020, 2, 5958–5964. [Google Scholar]
- Khan, N.; Ahmed, M.; Khan, R.A.; Gul, S. Antioxidant, cytotoxicity activity and phytochemical analysis of Chenopodium murale L. Int. J. Bot. Stud. 2019, 4, 25–28. [Google Scholar]
- Alwahibi, M. Anatomical study of four species of Heliotropium, L. (Boraginaceae) from Saudi Arabia. Afr. J. Plant Sci. 2013, 7, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Agrawal, R.C.; Shrivastava, V.K. Assessment of median lethal dose and anti-mutagenic effects of Glycyrrhiza glabra root extract against chemically induced micronucleus formation in Swiss albino mice. Int. J. Basic Clin. Pharmacol. 2014, 3, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Alqasoumi, S.I. Phytochemical study of the aerial parts of Conyza discoridis growing in Saudi Arabia. Nat. Prod. Sci. 2009, 15, 66–70. [Google Scholar]
- El-Hamoul, M.M.A.; Ibrahim, M.T. GC/MS analysis of the volatile constituents of individual organs of Conyza dioscoridis (L.) Desf. growing in Egypt. Alex. J. Pharm. Sci. 2003, 17, 75–80. [Google Scholar]
- Shtalwi, M.H.; Rawi, S.M.; Alshibly, N.M.; Al-Hazimi, M. Chemical screening and antihyperglycemic property of Cleome droserifolia ethanol extract. J. Med. Plant Res. 2013, 7, 2769–2776. [Google Scholar]
- Hashem, N.M.; Shehata, M.G. Antioxidant and antimicrobial activity of Cleome droserifolia (Forssk.) Del. and its biological effects on redox status, immunity and gut microflora. Animals 2021, 11, 1929. [Google Scholar] [CrossRef] [PubMed]
- Shaker, K.H.; Al Shehri, B.M.; Oteef, M.D.Y.; Mahmoud, M.F. Antioxidant compounds from Euphorbia schimperiana Scheele in Areer region, Saudi Arabia. Int. J. Pharm. Sci. Rev. Res. 2015, 32, 117–122. [Google Scholar]
- Shi, Q.W.; Su, X.H.; Kiyota, H. Chemical and Pharmacological Research in the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295. [Google Scholar] [CrossRef] [PubMed]
- Alraey, D.A.; Haroun, S.A.; Omar, M.N.; Abd-ElGawad, A.M.; El-Shobaky, A.M.; Mowafy, A.M. Fluctuation of essential oil constituents in Origanum syriacum subsp. Sinaicum in response to plant growth promoting bacteria. J. Essent. Bear. Plants 2019, 22, 18–23. [Google Scholar] [CrossRef]
- Afify, A.M.R.; Esawy, S.H.; El-Hadidy, E.M.; Abdel-Salam, M.A.L. Antioxidant and cytotoxicity of Origanum syriacum L. Adv. Food Sci. 2014, 36, 58–64. [Google Scholar]
Phytoconstituents | Mode of Action | Source | Active Ingredients | Antimutagenic Test | References |
---|---|---|---|---|---|
Flavonoids | Neutralizes and scavenges all types of oxidizing radicals. | Millingtonia hortensis | Hispidulin, hortensin | S. typhimurium strain (In-vitro) | [57] |
Glycyrrhiza glabra | Quercetin, myricetin | In vivo mouse micronucleus | [58] | ||
Ocimum basilicum | Herperidine | S. typhimurium strain (In-vitro) | [59] | ||
Phenolic compounds | Scavenges all types of free radicals. | Camellia sinensis | Epicatechin, epigallocatechin | In vivo mouse lymphoma cell | [60] |
Curcuma longa | Curcumin | In vivo rat micronucleus | [61] | ||
Syzygium aromaticum | Eugenol | In vivo mouse micronucleus | |||
Tannins | Scavenges reactive oxygen species and inhibits lipid peroxidation. | Acacia nilotica | Tannic acid, ellagic acid, gallic acid | In vivo mouse micronucleus, In-vitro S. typhi strain | [62,63] |
Carotenoids | Protects cell from free radical attack and improves the antioxidant status. | Daucus carota | Beta-carotene, canthaxanthine | In vitro callus culture cell lines | [64] |
Diterpenoids | Counteracts against oxidative stress-induced lipid peroxidation. | Aquillaria agallocha | Erythroxydiol | In vivo rodent spleen DNA damage | [65] |
Coumarins | Reduces the effects of oxidative stress. | Psoralea corylifolia | Psoralen | In vivo mouse micronucleus | [66] |
Selinum monniere | Imperatorin | S. typhimurium strain (In-vitro) | [67] | ||
Anthraquinones | Improves the status of antioxidants. | Aloe barborescence | Aloe-emodin-anthraquinone, anthrone | D. melanogaste phenotype test | [68] |
Saponins | Scavenges free radicals and improves the functioning of antioxidant enzymes. | Panax ginseng | Ginseng saponin | S. typhimurium strain (In-vitro) | [69] |
Xanthones | Acts against oxygen-derived free radicals. | Visma amazonica | Euxanthone | S. typhimurium strain (In-vitro) | [70] |
Monoterpenoids | Protects against NADPH induced oxidative injury. | Cymbopogan citrates | Citral | In vivo mouse micronucleus | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asdaq, S.M.B.; Rabbani, S.I.; Imran, M.; Alanazi, A.A.; Alnusir, G.Y.; Al-Shammari, A.A.; Alsubaie, F.H.; Alsalman, A.J. A Review on Potential Antimutagenic Plants of Saudi Arabia. Appl. Sci. 2021, 11, 8494. https://doi.org/10.3390/app11188494
Asdaq SMB, Rabbani SI, Imran M, Alanazi AA, Alnusir GY, Al-Shammari AA, Alsubaie FH, Alsalman AJ. A Review on Potential Antimutagenic Plants of Saudi Arabia. Applied Sciences. 2021; 11(18):8494. https://doi.org/10.3390/app11188494
Chicago/Turabian StyleAsdaq, Syed Mohammed Basheeruddin, Syed Imam Rabbani, Mohd. Imran, Amani A. Alanazi, Ghada Y. Alnusir, Abdullah A. Al-Shammari, Feras H. Alsubaie, and Abdulkhaliq J. Alsalman. 2021. "A Review on Potential Antimutagenic Plants of Saudi Arabia" Applied Sciences 11, no. 18: 8494. https://doi.org/10.3390/app11188494
APA StyleAsdaq, S. M. B., Rabbani, S. I., Imran, M., Alanazi, A. A., Alnusir, G. Y., Al-Shammari, A. A., Alsubaie, F. H., & Alsalman, A. J. (2021). A Review on Potential Antimutagenic Plants of Saudi Arabia. Applied Sciences, 11(18), 8494. https://doi.org/10.3390/app11188494