Description of the Guelder Rose Fruit in Terms of Chemical Composition, Antioxidant Capacity and Phenolic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Dry Matter, Titratable Acidity, Pectin
2.3. Vitamin C as L-Ascorbic Acid
2.4. Analysis of Sugars with HPLC-ELSD Method
2.5. Analysis of Antioxidant Activity (ABTS, FRAP, TPC)
2.6. UPLC–MS Method for Identification of Polyphenols
2.7. Statistical Analysis
3. Results and Discussion
Peak Number | RT (min) | [M-H]- (m/z) | [2M-H]-(m/z) | Compound | Refs. |
---|---|---|---|---|---|
1 | 0.984 | 305.1158 | Glutathione (oxidized form) | [34,35] | |
2 | 1.123 | 129.1799 | UI organic acid | [35] | |
3 | 1.206 | 215.2558 | UI | ||
4 | 1.361 | 191.2826 | Quinic acid | [36] | |
5 | 2.069 | 337.2717 | 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5′-monophosphate | [34,35] | |
6 | 2.,325 | 191.2458 | Quinic acid | [36] | |
7 | 2.791 | 321.2785 | UI | ||
8 | 3.154 | 377.3181 | UI | ||
9 | 3.619 | 393.3092 | UI flavonoid | [35] | |
10 | 3.808 | 377.3181 | UI | ||
11 | 3.997 | 211.2830 | UI | ||
12 | 4.307 | 431.2463 | Apigenin-7-O-glucoside | [34,35] | |
13 | 4.428 | 279.3191 | p-Coumaric acid cinnamyl ester | [37] | |
14 | 4.583 | 361.3319 | UI | ||
15 | 4.806 | 375.3049 | Loganic acid | [38] | |
16 | 5.082 | 707.1758 | Chlorogenic acid | [39] | |
17 | 5.358 | 577.2130 | Pelargonidin 3-O- robinobioside | [34,35] | |
18 | 5.547 | 707.1758 | UI | ||
19 | 579,2114 | UI | |||
20 | 5.945 | 707.1758 | Chlorogenic acid | [39] | |
21 | 6,477 | 577.2130 | Procyanidin B1 | [34,35] | |
22 | 6.599 | 382.2887 | 1,3-dicoumaroylglycerol | ||
23 | 6.909 | 353.2762 | Chlorogenic acid | [39] | |
24 | 7.097 | 865.0824 | Procyanidin C | [34,35] | |
25 | 7.495 | 491.3129 | Oleanane-type triterpenoids | ||
26 | 7.596 | 479.3403 | Paeoniflorin | [39] | |
27 | 7.839 | 595.1930 | Quercetin 3-O-glucosyl-xyloside apigenin | [34,35] | |
28 | 8.061 | 183.2548 | 3,4-Dihydroxymandelic | ||
29 | 8.270 | 609.1974 | Quercetin 3-rutinoside | ||
30 | 8.682 | 463.2233 | Ellagic acid-hexoside | ||
31 | 9.113 | 479.3448 | Myricetin-3-Galactoside | ||
32 | 10.474 | 739.2396 | Kaempferol-3-Galactoside-6″-Rhamnoside-3‴-Rhamnoside | [34,35] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozrenk, K.; Ilhan, G.; Sagbas, H.I.; Karatas, N.; Ercisli, S.; Colak, A.M. Characterization of European cranberrybush (Viburnum opulus L.) genetic resources in Turkey. Sci. Hortic. 2020, 273, 109611. [Google Scholar] [CrossRef]
- Polka, D.; Podsędek, A.; Koziołkiewicz, M. Comparison of Chemical Composition and Antioxidant Capacity of Fruit, Flower and Bark of Viburnum opulus. Plant Foods Hum. Nutr. 2019, 74, 436–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajszczak, D.; Zakłos-Szyda, M.; Podsędek, A. Viburnum opulus L.—A Review of Phytochemistry and Biological Effects. Nutrients 2020, 12, 3398. [Google Scholar] [CrossRef]
- Cesoniene, L.; Daubaras, R.; Vencloviene, J.; Viškelis, P. Biochemical and agro-biological diversity of Viburnum opulus genotypes. Open Life Sci. 2010, 5, 864–871. [Google Scholar] [CrossRef]
- Ersoy, N.; Ercisli, S.; Gundogdu, M. Evaluation of European Cranberrybush (Viburnum opulus L.) genotypes for agro-morphological, biochemical and bioactive characteristics in Turkey. Folia Hortic. 2017, 29, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, A.H.; Balade, A.; Yakubu, O.F. Gas Chromatography-Mass Spectrometry Analysis OF (Viburnum Opulus L.) Extract and Its Toxicity Studies In Rats. Asian J. Pharm. Clin. Res. 2017, 10, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Yahia, E.M.; García-Solís, P.; Celis, M.E.M. Contribution of fruits and vegetables to human nutrition and health. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–45. [Google Scholar]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects—A comprehen-sive review. Crit. Rev. Food Sci. Nutr. 2018, 29, 1–25. [Google Scholar] [CrossRef]
- Pietrzyk, N.; Zakłos-Szyda, M.; Koziołkiewicz, M.; Podsędek, A. Viburnum opulus L. fruit phenolic compounds protect against FFA-induced steatosis of HepG2 cells via AMPK pathway. J. Funct. Foods 2021, 80, 104437. [Google Scholar] [CrossRef]
- Karaçelik, A.A.; Küçük, M.; Iskefiyeli, Z.; Aydemir, S.; De Smet, S.; Miserez, B.; Sandra, P. Antioxidant components of Viburnum opulus L. determined by on-line HPLC–UV–ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chem. 2015, 175, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Lykkesfeldt, J.; Svendsen, O. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Veter. J. 2007, 173, 502–511. [Google Scholar] [CrossRef]
- Çemtekin, B.; Kilinç, E.; Karabacak, L.; Dagtekin, T.; Tiryaki, T.T.; Soyuçok, A.; Şimşek, A.; Kiliç, B. Aa evaluation of guelder rose (Viburnum opulus L.) and hawthorn (Crataegus monogyna) concentrates as alternative antioxidant sources to BHT and nitrite in poultry meat model system. Sci. Pap. Ser. D. Anim. Sci. 2019, 62, 217–227. [Google Scholar]
- Mazur, M.; Salejda, A.; Pilarska, K.; Krasnowska, G.; Nawirska-Olszańska, A.; Kolniak-Ostek, J.; Bąbelewski, P. The Influence of Viburnum opulus Fruits Addition on Some Quality Properties of Homogenized Meat Products. Appl. Sci. 2021, 11, 3141. [Google Scholar] [CrossRef]
- Polish Committee for Standardization. Fruit and vegetable products. Preparation of samples for physico-chemical studies. Determination of dry matter content by gravimetric method; Polish Standard, PN-90/A-75101/03; Polish Committee for Standardization: Warsaw Poland, 1990. (In Polish) [Google Scholar]
- Polish Committee for Standardization. Przetwory Owocowe i Warzywne. Przygotowanie Próbek i Metody Badań Fizykochemicznych. Oznaczenie Kwasowości Ogólnej; Technical Report No. PN-90/A-75101/04; Polish Committee for Standardization: Warsaw, Poland, 1990. (In Polish) [Google Scholar]
- Pijanowski, E.; Mrożewski, S.; Horubała, A.; Jarczyk, A. Technologia produktów owocowych i warzywnych; PWRiL: Warsaw, Poland, 1973. [Google Scholar]
- Polska, N. Przetwory owocowe i warzywne. Przygotowanie próbek i metody badań fizykochemicznych. Oznaczanie Zawartości Witaminy C.; Technical Report No. PN-90/A-75101/11; Warsaw, Poland, 1990. [Google Scholar]
- Kolniak-Ostek, J. Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, M.E.; Andersson, C.S.; Oredsson, S.; Berglund, A.R.H.; Gustavsson†, K.-E. Antioxidant Levels and Inhibition of Cancer Cell Proliferation in Vitro by Extracts from Organically and Conventionally Cultivated Strawberries. J. Agric. Food Chem. 2006, 54, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Püssa, T.; Pällin, R.; Raudsepp, P.; Soidla, R.; Rei, M. Inhibition of lipid oxidation and dynamics of polyphenol content in mechanically deboned meat supplemented with sea buckthorn (Hippophae rhamnoides) berry residues. Food Chem. 2008, 107, 714–721. [Google Scholar] [CrossRef]
- Ceylan, D.; Aksoy, A.; Ertekin, T.; Yay, A.H.; Nisari, M.; Karatoprak, G. Şeker; Ülger, H. The effects of gilaburu (Viburnum opulus) juice on experimentally induced Ehrlich ascites tumor in mice. J. Cancer Res. Ther. 2018, 14, 314–320. [Google Scholar]
- Rop, O.; Reznicek, R.; Valsikova, M.; Jurikova, T.; Mlcek, J.; Kramarova, D. Antioxidant properties of Guelder rose (Viburnum opulus var. edule). Molecules 2010, 15, 4467–4477. [Google Scholar] [CrossRef]
- Chemical composition, phenolic compounds and antioxidant activity of three varieties of apple from organic and conventional farming. Available online: https://www.pimr.eu/wp-content/uploads/2019/05/2010_4_WOB.pdf (accessed on 1 October 2021).
- Kucharska, A.; Sokol-Letowska, A.; Piórecki, N. Morfologiczna, fizykochemiczna i przeciwutleniająca charakterystyka owoców polskich odmian derenia właściwego (Cornus mas L.). Zywn. Nauk. Technol. 2011, 18, 3. [Google Scholar]
- Tyburcy, A.; Ścibisz, I.; Jabłońska, A. Wpływ dodatku śliwek na wybrane właściwości burgerów wieprzowych. Eng. Sci. Technol. 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Skupień, K. Ocena wybranych cech jakościowych świeżych i mrożonych owoców sześciu odmian truskawki. Acta Sci. Pol. Hortorum Cultus. 2003, 2, 115–123. [Google Scholar]
- Markowski, J.; Płocharski, W. Przydatność porzeczek czarnych i agrestu do przetwórstwa. Hasło Ogrodnicze 2003, 10. Available online: https://www.ho.haslo.pl/article.php?id=1365&rok=2003&numer=10 (accessed on 1 October 2021).
- Kraujalyte, V.; Venskutonis, P.R.; Pukalskas, A.; Cesoniene, L.; Daubaras, R. Antioxidant properties and polyphenolic com-positions of fruits from different European cranberrybush (Viburnum opulus L.) genotypes. Food Chem. 2013, 141, 3695–3702. [Google Scholar] [CrossRef]
- Akbulut, M.; Causir, S.; Marakoglu, T.; Coklar, H. Chemical and technological properties of European cranberrybush 2008. Asian J. Chem. 2008, 20, 1875–1885. [Google Scholar]
- Ścibisz, I.; Mitek, M.; Serwinowska, K. Aktywność przeciwutleniająca soków i półkoncentratów otrzymanych z owoców borówki wysokiej (Vaccinium corymbosum L). Zywn. Nauk. Technol. 2004, 3, 196–203. [Google Scholar]
- ReSpect (RIKEN tandem mass spectral database). Database for Phytochemicals, http://spectra.psc.riken.jp/ (accessed on 1 October 2021) Chemical structure database ChemSpider. Available online: http://www.chemspider.com/ (accessed on 1 October 2021).
- Bouhafsoun, A.; Yilmaz, M.A.; Boukeloua, A.; Temel, H.; Harche, M.K. Simultaneous quantification of phenolic acids and flavonoids in Chamaerops humilis L. using LC–ESI-MS/MS. Food Sci. Technol. 2018, 38, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Balingui, C.F.; Noel, N.J.; Emmanuel, T.; Benoit, N.M.; Gervais, H.M.; Boubakary. A LC-MS Analysis, Total Phenolics Content, Phytochemical Study and DPPH Antiradical Scavenging Activity of Two Cameroonian Propolis Samples. Med. Chem. 2019, 9, 100–106. [Google Scholar]
- Kucharska, A.Z. Związki aktywne owoców derenia (Cornus mas L.); Uniwersytet Przyrodniczy we Wrocławiu: Warshaw, Poland, 2012; p. 148. [Google Scholar]
- Fernández-Poyatos, M.; Ruiz-Medina, A.; Zengin, G.; Llorent-Martínez, E.J. Phenolic Characterization, Antioxidant Activity, and Enzyme Inhibitory Properties of Berberis thunbergii DC. Leaves: A Valuable Source of Phenolic Acids. Molecules 2019, 24, 4171. [Google Scholar] [CrossRef] [Green Version]
- Zhicong, C.; Zhong, B.; Barrow, C.J.; Frank, R. Dunshea, F.R.; Suleria, H.A.R. Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential. Arab. J. Chem. 2021, 14, 6. [Google Scholar] [CrossRef]
Parameter | Unit | Guelder Rose Fruit |
---|---|---|
Dry matter | % | 17.3 ± 0.7 |
* Extract | 13 ± 0.53 | |
* Titratable acidity | 1.78 ± 0.48 | |
* Pectin | 1.10 ± 0.97 | |
* Vitamin C | mg/100 g | 47.79 ± 1.02 |
* Sugar (fructose) | g/100 g | 6.85 ± 0.67 |
Parameter | Unit | Guelder Rose Fruit |
---|---|---|
ABTS | µM Trolox/100 g | 14.63 ± 0.61 |
FRAP | µM Trolox/100 g | 211.14 ± 1.04 |
TPC | mg GAE/100 g | 1695.88 ± 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, M.; Szperlik, J.; Salejda, A.M.; Krasnowska, G.; Kolniak-Ostek, J.; Bąbelewski, P. Description of the Guelder Rose Fruit in Terms of Chemical Composition, Antioxidant Capacity and Phenolic Compounds. Appl. Sci. 2021, 11, 9221. https://doi.org/10.3390/app11199221
Mazur M, Szperlik J, Salejda AM, Krasnowska G, Kolniak-Ostek J, Bąbelewski P. Description of the Guelder Rose Fruit in Terms of Chemical Composition, Antioxidant Capacity and Phenolic Compounds. Applied Sciences. 2021; 11(19):9221. https://doi.org/10.3390/app11199221
Chicago/Turabian StyleMazur, Monika, Jakub Szperlik, Anna Marietta Salejda, Grażyna Krasnowska, Joanna Kolniak-Ostek, and Przemysław Bąbelewski. 2021. "Description of the Guelder Rose Fruit in Terms of Chemical Composition, Antioxidant Capacity and Phenolic Compounds" Applied Sciences 11, no. 19: 9221. https://doi.org/10.3390/app11199221
APA StyleMazur, M., Szperlik, J., Salejda, A. M., Krasnowska, G., Kolniak-Ostek, J., & Bąbelewski, P. (2021). Description of the Guelder Rose Fruit in Terms of Chemical Composition, Antioxidant Capacity and Phenolic Compounds. Applied Sciences, 11(19), 9221. https://doi.org/10.3390/app11199221