Effects of High-Impact Weight-Bearing Exercise on Bone Mineral Density and Bone Metabolism in Middle-Aged Premenopausal Women: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. High-Impact Weight-Bearing Exercise Program
2.3. Anthropometric Measurements
2.4. Bone Mineral Density
2.5. Bone Metabolic Markers
2.6. Nutritional Intake
2.7. Statistical Analysis
3. Results
3.1. Bone Mineral Density
3.2. Bone Metabolic Markers
4. Discussion
5. Limitation of the study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 2655–2667. [Google Scholar] [CrossRef] [Green Version]
- Reginster, J.Y.; Burlet, N. Osteoporosis: A still increasing prevalence. Bone 2006, 38, S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Sweet, M.G.; Sweet, J.M.; Jeremiah, M.P.; Galazka, S.S. Diagnosis and treatment of osteoporosis. Am. Fam. Physician 2009, 79, 193–200. [Google Scholar] [PubMed]
- Tarride, J.E.; Hopkins, R.B.; Leslie, W.D.; Morin, S.; Adachi, J.D.; Papaioannou, A.; Bessette, L.; Brown, J.P.; Goeree, R. The burden of illness of osteoporosis in Canada. Osteoporos. Int. 2012, 23, 2591–2600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef] [Green Version]
- Singer, A.; Exuzides, A.; Spangler, L.; O’Malley, C.; Colby, C.; Johnston, K.; Agodoa, I.; Baker, J.; Kagan, R. Burden of illness for osteoporotic fractures compared with other serious diseases among postmenopausal women in the United States. Mayo Clin. Proc. 2015, 90, 53–62. [Google Scholar] [CrossRef]
- Burch, J.; Rice, S.; Yang, H.; Neilson, A.; Stirk, L.; Francis, R.; Holloway, P.; Selby, P.; Craig, D. Systematic review of the use of bone turnover markers for monitoring the response to osteoporosis treatment: The secondary prevention of fractures, and primary prevention of fractures in high-risk groups. Health Technol. Assess. 2014, 18, 1–180. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, P.; Cooper, C. Osteoporosis. Lancet 2006, 367, 2010–2018. [Google Scholar] [CrossRef]
- Cummings, S.R.; Melton, L.J. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002, 359, 1761–1767. [Google Scholar] [CrossRef]
- Lampropoulos, C.E.; Papaioannou, I.; D’Cruz, D.P. Osteoporosis—A risk factor for cardiovascular disease? Nat. Rev. Rheumatol. 2012, 8, 587–598. [Google Scholar] [CrossRef]
- Greenblatt, M.B.; Tsai, J.N.; Wein, M.N. Bone Turnover Markers in the Diagnosis and Monitoring of Metabolic Bone Disease. Clin. Chem. 2017, 63, 464–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetty, S.; Kapoor, N.; Bondu, J.D.; Thomas, N.; Paul, T.V. Bone turnover markers: Emerging tool in the management of osteoporosis. Indian J. Endocrinol. Metab. 2016, 20, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Vasikaran, S.; Eastell, R.; Bruyère, O.; Foldes, A.J.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trenti, T.; et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos. Int. 2011, 22, 391–420. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F.; DiNicolantonio, J.J. The molecular biology and pathophysiology of vascular calcification. Postgrad. Med. 2014, 126, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Osako, M.K.; Nakagami, H.; Koibuchi, N.; Shimizu, H.; Nakagami, F.; Koriyama, H.; Shimamura, M.; Miyake, T.; Rakugi, H.; Morishita, R. Estrogen inhibits vascular calcification via vascular RANKL system: Common mechanism of osteoporosis and vascular calcification. Circ. Res. 2010, 107, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Lello, S.; Capozzi, A.; Scambia, G. Osteoporosis and cardiovascular disease: An update. Gynecol. Endocrinol. 2015, 31, 590–594. [Google Scholar] [CrossRef]
- Ooms, M.E.; Lips, P.; Roos, J.C.; van der Vijgh, W.J.; Popp-Snijders, C.; Bezemer, P.D.; Bouter, L.M. Vitamin D status and sex hormone binding globulin: Determinants of bone turnover and bone mineral density in elderly women. J. Bone Min. Res. 1995, 10, 1177–1184. [Google Scholar] [CrossRef]
- Kamineni, V.; Latha, A.P.; Ramathulasi, K. Association between serum 25-hydroxyvitamin D levels and bone mineral density in normal postmenopausal women. J. Midlife Health 2016, 7, 163–168. [Google Scholar] [CrossRef]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef]
- Fisher, A.; Goh, S.; Srikusalanukul, W.; Davis, M. Elevated serum PTH is independently associated with poor outcomes in older patients with hip fracture and vitamin D inadequacy. Calcif. Tissue Int. 2009, 85, 301–309. [Google Scholar] [CrossRef]
- Hao, L.; Carson, J.L.; Schlussel, Y.; Noveck, H.; Shapses, S.A. Vitamin D deficiency is associated with reduced mobility after hip fracture surgery: A prospective study. Am. J. Clin. Nutr. 2020, 112, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yao, X.; Zhu, Z. Associations between serum calcium, 25(OH)D level and bone mineral density in older adults. J. Orthop. Surg. Res. 2019, 14, 458. [Google Scholar] [CrossRef]
- Reid, I.R.; Birstow, S.M.; Bolland, M.J. Calcium and Cardiovascular Disease. Endocrinol. Metab. (Seoul) 2017, 32, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, S.; Garmo, H.; Malmström, H.; Hammar, N.; Jungner, I.; Walldius, G.; Van Hemelrijck, M. Association between serum calcium concentration and risk of incident and fatal cardiovascular disease in the prospective AMORIS study. Atherosclerosis 2016, 251, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Burgess, S.; Michaëlsson, K. Association of Genetic Variants Related to Serum Calcium Levels with Coronary Artery Disease and Myocardial Infarction. JAMA 2017, 318, 371–380. [Google Scholar] [CrossRef]
- Mezil, Y.A.; Allison, D.; Kish, K.; Ditor, D.; Ward, W.E.; Tsiani, E.; Klentrou, P. Response of Bone Turnover Markers and Cytokines to High-Intensity Low-Impact Exercise. Med. Sci. Sports Exerc. 2015, 47, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Kohrt, W.M.; Barry, D.W.; Schwartz, R.S. Muscle forces or gravity: What predominates mechanical loading on bone? Med. Sci. Sports Exerc. 2009, 41, 2050–2055. [Google Scholar] [CrossRef] [Green Version]
- Kohrt, W.M.; Bloomfield, S.A.; Little, K.D.; Nelson, M.E.; Yingling, V.R. American College of Sports Medicine Position Stand: Physical activity and bone health. Med. Sci. Sports Exerc. 2004, 36, 1985–1996. [Google Scholar] [CrossRef] [Green Version]
- Babatunde, O.O.; Forsyth, J.J.; Gidlow, C.J. A meta-analysis of brief high-impact exercises for enhancing bone health in premenopausal women. Osteoporos. Int. 2012, 23, 109–119. [Google Scholar] [CrossRef]
- Zhao, R.; Zhao, M.; Zhang, L. Efficiency of jumping exercise in improving bone mineral density among premenopausal women: A meta-analysis. Sports Med. 2014, 44, 1393–1402. [Google Scholar] [CrossRef]
- Martyn-St James, M.; Carroll, S. A meta-analysis of impact exercise on postmenopausal bone loss: The case for mixed loading exercise programmes. Br. J. Sports Med. 2009, 43, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Nikander, R.; Sievanen, H.; Heinonen, A.; Daly, R.M.; Uusi-Rasi, K.; Kannus, P. Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010, 8, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polidoulis, I.; Beyene, J.; Cheung, A.M. The effect of exercise on pQCT parameters of bone structure and strength in postmenopausal women—A systematic review and meta-analysis of randomized controlled trials. Osteoporos. Int. 2012, 23, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Marques, E.A.; Mota, J.; Carvalho, J. Exercise effects on bone mineral density in older adults: A meta-analysis of randomized controlled trials. Age 2012, 34, 1493–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, G.A.; Kelley, K.S.; Kohrt, W.M. Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: A meta-analysis of randomized controlled trials. BMC Musculoskelet. Disord. 2012, 13, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenway, K.G.; Walkley, J.W.; Rich, P.A. Impact exercise and bone density in premenopausal women with below average bone density for age. Eur. J. Appl. Physiol. 2015, 115, 2457–2469. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chen, X.; Zhang, L.; Wu, J.; Guo, J.; Zou, D.; Chen, B.; Sun, Z.; Shen, C.; Zou, J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Prog. Biophys. Mol. Biol. 2016, 122, 122–130. [Google Scholar] [CrossRef]
- Humphries, B.; Fenning, A.; Dugan, E.; Guinane, J.; MacRae, K. Whole-body vibration effects on bone mineral density in women with or without resistance training. Aviat. Space Environ. Med. 2009, 80, 1025–1031. [Google Scholar] [CrossRef]
- Scott, J.P.; Sale, C.; Greeves, J.P.; Casey, A.; Dutton, J.; Fraser, W.D. The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise. J. Appl. Physiol. 2011, 110, 423–432. [Google Scholar] [CrossRef]
- Lester, M.E.; Urso, M.L.; Evans, R.K.; Pierce, J.R.; Spiering, B.A.; Maresh, C.M.; Hatfield, D.L.; Kraemer, W.J.; Nindl, B.C. Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training. Bone 2009, 45, 768–776. [Google Scholar] [CrossRef]
- Kim, S.W.; Jung, S.W.; Seo, M.W.; Park, H.Y.; Song, J.K. Effects of bone-specific physical activity on body composition, bone mineral density, and health-related physical fitness in middle-aged women. J. Exerc. Nutr. Biochem. 2019, 23, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Manske, S.L.; Lorincz, C.R.; Zernicke, R.F. Bone health: Part 2, physical activity. Sports Health 2009, 1, 341–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troy, K.L.; Mancuso, M.E.; Butler, T.A.; Johnson, J.E. Exercise Early and Often: Effects of Physical Activity and Exercise on Women’s Bone Health. Int. J. Environ. Res. Public Health 2018, 15, 878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanudo, B.; de Hoyo, M.; Del Pozo-Cruz, J.; Carrasco, L.; Del Pozo-Cruz, B.; Tejero, S.; Firth, E. A systematic review of the exercise effect on bone health: The importance of assessing mechanical loading in perimenopausal and postmenopausal women. Menopause 2017, 24, 1208–1216. [Google Scholar] [CrossRef]
- Vainionpaa, A.; Korpelainen, R.; Leppaluoto, J.; Jamsa, T. Effects of high-impact exercise on bone mineral density: A randomized controlled trial in premenopausal women. Osteoporos. Int. 2005, 16, 191–197. [Google Scholar] [CrossRef]
- Niu, K.; Ahola, R.; Guo, H.; Korpelainen, R.; Uchimaru, J.; Vainionpaa, A.; Sato, K.; Sakai, A.; Salo, S.; Kishimoto, K.; et al. Effect of office-based brief high-impact exercise on bone mineral density in healthy premenopausal women: The Sendai Bone Health Concept Study. J. Bone Miner. Metab. 2010, 28, 568–577. [Google Scholar] [CrossRef]
- Foster, C.; Armstrong, M. What types of physical activities are effective in developing muscle and bone strength and balance. J. Frailty Sarcopenia Falls 2018, 3, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Lombardi, G.; Jiao, W.; Banfi, G. Effects of Exercise on Bone Status in Female Subjects, from Young Girls to Postmenopausal Women: An Overview of Systematic Reviews and Meta-Analyses. Sports Med. 2016, 46, 1165–1182. [Google Scholar] [CrossRef]
- Santos, L.; Elliott-Sale, K.J.; Sale, C. Exercise and bone health across the lifespan. Biogerontology 2017, 18, 931–946. [Google Scholar] [CrossRef] [Green Version]
- Delmas, P.D.; Hardy, P.; Garnero, P.; Dain, M. Monitoring individual response to hormone replacement therapy with bone markers. Bone 2000, 26, 553–560. [Google Scholar] [CrossRef]
- de Papp, A.E.; Bone, H.G.; Caulfield, M.P.; Kagan, R.; Buinewicz, A.; Chen, E.; Rosenberg, E.; Reitz, R.E. A cross-sectional study of bone turnover markers in healthy premenopausal women. Bone 2007, 40, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Vliet, E.L.; Lewiecki, E.M.; Maricic, M.; Abdelmalek, A.; Gluck, O.; Baylink, D.J. Clinical use of serum and urine bone markers in the management of osteoporosis. Curr. Med. Res. Opin. 2005, 21, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.K.; Antczak, A.J.; Lester, M.; Yanovich, R.; Israeli, E.; Moran, D.S. Effects of a 4-month recruit training program on markers of bone metabolism. Med. Sci. Sports Exerc. 2008, 40, S660–S670. [Google Scholar] [CrossRef] [PubMed]
- Josse, A.R.; Tang, J.E.; Tarnopolsky, M.A.; Phillips, S.M. Body composition and strength changes in women with milk and resistance exercise. Med. Sci. Sports Exerc. 2010, 42, 1122–1130. [Google Scholar] [CrossRef] [Green Version]
- Moghadasi, M.; Siavashpour, S. The effect of 12 weeks of resistance training on hormones of bone formation in young sedentary women. Eur. J. Appl. Physiol. 2013, 113, 25–32. [Google Scholar] [CrossRef]
- Pilch, W.; Tota, L.; Sadowska-Krepa, E.; Piotrowska, A.; Kepinska, M.; Palka, T.; Maszczyk, A. The Effect of a 12-Week Health Training Program on Selected Anthropometric and Biochemical Variables in Middle-Aged Women. Biomed. Res. Int. 2017, 2017, 9569513. [Google Scholar] [CrossRef] [Green Version]
- Scragg, R.; Camargo, C.A., Jr. Frequency of leisure-time physical activity and serum 25-hydroxyvitamin D levels in the US population: Results from the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 2008, 168, 577–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson-Hughes, B.; Heaney, R.P.; Holick, M.F.; Lips, P.; Meunier, P.J.; Vieth, R. Estimates of optimal vitamin D status. Osteoporos. Int. 2005, 16, 713–716. [Google Scholar] [CrossRef]
- Pilch, W.; Tyka, A.; Cebula, A.; Sliwicka, E.; Pilaczynska-Szczesniak, L.; Tyka, A. Effects of a 6-week Nordic walking training on changes in 25(OH)D blood concentration in women aged over 55. J. Sports Med. Phys. Fit. 2017, 57, 124–129. [Google Scholar] [CrossRef]
- Judd, S.E.; Tangpricha, V. Vitamin D deficiency and risk for cardiovascular disease. Am. J. Med. Sci. 2009, 338, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Baylin, A.; Levy, P.D. Vitamin D deficiency and insufficiency among US adults: Prevalence, predictors and clinical implications. Br. J. Nutr. 2018, 119, 928–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orces, C.H. Association between leisure-time aerobic physical activity and vitamin D concentrations among US older adults: The NHANES 2007-2012. Aging Clin. Exp. Res. 2019, 31, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Ten Haaf, D.S.M.; Balvers, M.G.J.; Timmers, S.; Eijsvogels, T.M.H.; Hopman, M.T.E.; Klein Gunnewiek, J.M.T. Determinants of vitamin D status in physically active elderly in the Netherlands. Eur. J. Nutr. 2019, 58, 3121–3128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerschan-Schindl, K.; Föger-Samwald, U.; Pietschmann, P. Bone Turnover Markers. In Principles of Bone and Joint Research; Springer: Berlin/Heidelberg, Germany, 2017; pp. 55–66. [Google Scholar] [CrossRef]
- Johansson, H.; Odén, A.; Kanis, J.A.; McCloskey, E.V.; Morris, H.A.; Cooper, C.; Vasikaran, S. A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif. Tissue Int. 2014, 94, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Helge, E.W.; Petersen, L.F.; Lindenskov, A.; Weihe, P.; Mortensen, J.; Jørgensen, N.R.; Krustrup, P. Effects of soccer vs swim training on bone formation in sedentary middle-aged women. Eur. J. Appl. Physiol. 2015, 115, 2671–2679. [Google Scholar] [CrossRef] [PubMed]
- Jackman, S.R.; Scott, S.; Randers, M.B.; Orntoft, C.; Blackwell, J.; Zar, A.; Helge, E.W.; Mohr, M.; Krustrup, P. Musculoskeletal health profile for elite female footballers versus untrained young women before and after 16 weeks of football training. J. Sports Sci. 2013, 31, 1468–1474. [Google Scholar] [CrossRef]
- Helge, E.W.; Andersen, T.R.; Schmidt, J.F.; Jørgensen, N.R.; Hornstrup, T.; Krustrup, P.; Bangsbo, J. Recreational football improves bone mineral density and bone turnover marker profile in elderly men. Scand. J. Med. Sci. Sports 2014, 24 (Suppl. 1), 98–104. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Corsi, A.; Lauretani, F.; Bandinelli, S.; Bartali, B.; Taub, D.D.; Guralnik, J.M.; Longo, D.L. The origins of age-related proinflammatory state. Blood 2005, 105, 2294–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, K.; Murphy, C.; Kirstein, B.; Fox, S.W.; Chambers, T.J. TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 2002, 143, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
Variables | HWE | CON | F-Value | ||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Time | Group | Interaction | |
Age (yrs) | 40.3 ± 4.23 | - | 40.4 ± 3.31 | - | |||
Body height (cm) | 160.5 ± 4.74 | - | 161.2 ± 5.04 | - | |||
Body weight (kg) | 58.8 ± 10.98 | 57.9 ± 9.43 | 62.8 ± 11.73 | 63.3 ± 12.16 | 0.148 | 1.377 | 1.875 |
BMI (kg·m−2) | 22.7 ± 3.62 | 22.3 ± 3.14 | 24.1 ± 4.14 | 24.3 ± 4.46 | 0.277 | 1.409 | 2.137 |
Total caloric intake (Kcal) | 2151.20 ± 487.94 | 2027.71 ± 636.44 | 2328.61 ± 640.41 | 2274.09 ± 582.72 | 0.632 | 1.353 | 0.095 |
Carbohydrate (g) | 293.29 ± 79.16 | 260.95 ± 89.44 | 297.46 ± 86.66 | 294.98 ± 85.55 | 1.409 | 0.497 | 1.036 |
Fat (g) | 72.75 ± 19.01 | 73.82 ± 23.36 | 83.69 ± 25.82 | 80.00 ± 26.35 | 0.065 | 1.495 | 0.215 |
Protein (g) | 98.08 ± 29.89 | 92.35 ± 29.98 | 113.30 ± 40.46 | 102.07 ± 31.60 | 1.665 | 1.498 | 0.175 |
Vitamin D (ug) | 5.18 ± 4.47 | 4.57 ± 2.84 | 4.76 ± 2.26 | 6.02 ± 5.30 | 0.109 | 0.260 | 0.900 |
Calcium (mg) | 878.26 ± 242.49 | 854.96 ± 346.25 | 1051.38 ± 474.55 | 995.38 ± 575.03 | 0.224 | 1.352 | 0.038 |
Magnesium (mg) | 163.6 ± 80.95 | 136.60 ± 53.77 | 124.24 ± 51.53 | 134.56 ± 63.81 | 0.270 | 1.650 | 1.350 |
Program | Contents | Phase (Weeks) | Set | Duration (min) | FITT | |
---|---|---|---|---|---|---|
Exercise Time | Rest Time | |||||
Warm-up | Dynamic stretching (Upper and lower body) | 10 | Frequency: 3 times/wk Intensity: 60–80% HRR Time: 50 min Type: HWE with music (1–8 wks: 15 s for each exercise) (9–16 wks: 20 s for each exercise) | |||
Main exercise | Clap, Walking, Jumping burpee, Jumping squat, Running in place, Wall press, Bench stepping, Jumping lunge, Jumping jack, Push up | 1–4 5–8 9–12 13–16 | 5 6 5 6 | 12.5 15 17 20 | 14 15 12 12.5 | |
Cool-down | Static stretching (Upper and lower body) | 10 |
Variables | HWE | CON | F-Value (ηp2) | ||||
---|---|---|---|---|---|---|---|
Pre (95% CI) | Post (95% CI) | Pre (95% CI) | Post (95% CI) | Time | Group | Interaction | |
Femur BMD (g/cm2) | 0.891 ± 0.103 (0.838–0.946) | 0.895 ± 0.103 (0.842–0.950) | 0.898 ± 0.109 (0.846–0.952) | 0.898 ± 0.113 (0.846–0.952) | 0.515 (0.017) | 0.015 (0.001) | 0.458 (0.016) |
Lumbar BMD (g/cm2) | 1.036 ± 0.158 (0.956–1.122) | 1.036 ± 0.167 (0.952–1.126) | 1.009 ± 0.111 (0.957–1.062) | 1.009 ± 0.112 (0.958–1.064) | 0.003 (0.000) | 0.290 (0.010) | 0.009 (0.000) |
Forearm BMD (g/cm2) | 0.563 ± 0.036 (0.544–0.584) | 0.560 ± 0.037 (0.541–0.581) | 0.579 ± 0.041 (0.560–0.598) | 0.576 ± 0.045 (0.555–0.596) | 3.413 (0.105) | 1.243 (0.041) | 0.048 (0.002) |
Variables | HWE | CON | F-value (ηp2) | ||||
---|---|---|---|---|---|---|---|
Pre (95% CI) | Post (95% CI) | Pre (95% CI) | Post (95% CI) | Time | Group | Interaction | |
25-(OH) D (ng·mL−1) | 14.1 ± 7.24 (9.9–18.2) | 20.5 ± 7.81 ** (16.0–25.1) | 17.3 ± 6.37 (13.9–20.5) | 19.0 ± 5.17 (16.4–21.7) | 13.559 ## (.319) | 0.158 (0.005) | 4.451 # (0.133) |
Intact PTH (pg·mL−1) | 36.6 ± 9.00 (31.4–41.8) | 42.6 ± 8.73 * (37.6–47.7) | 36.5 ± 10.18 (31.2–41.7) | 38.9 ± 8.85 (34.4–43.5) | 4.447 # (0.133) | 0.498 (0.017) | 0.800 (0.027) |
OPG (pmol·L−1) | 5.7 ± 0.80 (5.2–6.1) | 5.1 ± 1.26 (4.4–5.8) | 5.6 ± 1.26 (5.0–6.3) | 5.3 ± 1.65 (4.4–6.1) | 3.911 (0.119) | 0.021 (0.001) | 0.173 (0.006) |
RANKL (pmol·L−1) | 286.9 ± 178.95 (183.6–390.3) | 277.8 ± 186.06 (170.3–325.2) | 199.6 ± 108.34 (143.9–255.3) | 224.5 ± 124.01 (160.7–288.2) | 0.225 (0.008) | 1.868 (0.061) | 1.062 (0.035) |
OPN (ng·mL−1) | 63.2 ± 31.97 (44.7–81.6) | 50.1 ± 37.46 * (28.5–71.8) | 51.2 ± 15.56 (43.2–59.2) | 47.8 ± 20.78 (37.1–58.5) | 5.480 # (0.159) | 0.622 (0.021) | 1.867 (0.060) |
Osteocalcin (ng·mL−1) | 6.8 ± 1.46 (6.0–7.7) | 7.3 ± 1.29 (6.6–8.1) | 6.9 ± 1.69 (6.0–7.8) | 6.2 ± 1.50 * (5.5–7.0) | 0.132 (0.005) | 1.068 (0.036) | 10.514 ## (0.266) |
CTX (ng·mL−1) | 0.24 ± 0.10 (0.19–0.30) | 0.28 ± 0.09 (0.23–0.34) | 0.26 ± 0.16 (0.18–0.35) | 0.31 ± 0.14 * (0.23–0.38) | 8.768 ## (0.232) | 0.296 (0.010) | 0.018 (0.001) |
Calcium (mg·dL−1) | 9.7 ± 0.46 (9.5–10.0) | 9.5 ± 0.40 (9.3–9.8) | 9.8 ± 0.29 (9.7–10.0) | 9.5 ± 0.29 ** (9.4–9.7) | 7.986 ## (0.216) | 0.204 (0.007) | 0.442 (0.015) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-W.; Seo, M.-W.; Jung, H.-C.; Song, J.-K. Effects of High-Impact Weight-Bearing Exercise on Bone Mineral Density and Bone Metabolism in Middle-Aged Premenopausal Women: A Randomized Controlled Trial. Appl. Sci. 2021, 11, 846. https://doi.org/10.3390/app11020846
Kim S-W, Seo M-W, Jung H-C, Song J-K. Effects of High-Impact Weight-Bearing Exercise on Bone Mineral Density and Bone Metabolism in Middle-Aged Premenopausal Women: A Randomized Controlled Trial. Applied Sciences. 2021; 11(2):846. https://doi.org/10.3390/app11020846
Chicago/Turabian StyleKim, Sung-Woo, Myong-Won Seo, Hyun-Chul Jung, and Jong-Kook Song. 2021. "Effects of High-Impact Weight-Bearing Exercise on Bone Mineral Density and Bone Metabolism in Middle-Aged Premenopausal Women: A Randomized Controlled Trial" Applied Sciences 11, no. 2: 846. https://doi.org/10.3390/app11020846
APA StyleKim, S. -W., Seo, M. -W., Jung, H. -C., & Song, J. -K. (2021). Effects of High-Impact Weight-Bearing Exercise on Bone Mineral Density and Bone Metabolism in Middle-Aged Premenopausal Women: A Randomized Controlled Trial. Applied Sciences, 11(2), 846. https://doi.org/10.3390/app11020846