Bioactive Compounds from Zingiber montanum and Their Pharmacological Activities with Focus on Zerumbone
Abstract
:1. Introduction
2. Traditional Uses of Zingiber montanum
3. Bioactive Compounds
4. Pharmacological Activities of Z. montanum Extracts and Compounds
4.1. Anti-Inflammatory Activity
4.2. Antifungal Activity
4.3. Antioxidant Activity
4.4. Antibacterial Activity
4.5. Analgesic and Antipyretic Activity
4.6. Antiulcer Activity
4.7. Anti-Allergic Activity
4.8. Cytotoxicity Activity
4.9. Other Activities
5. Biological Activities of Zerumbone (ZER)
5.1. Anticancer Activity
5.2. Anti-Inflammatory Activity
5.3. Antimicrobial Activity
5.4. Other Pharmacological Activities
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A.; et al. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef] [Green Version]
- Sabulal, B.; Dan, M.; Kurup, R.; Pradeep, N.S.; Valsamma, R.K.; George, V. Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity. Phytochemistry 2006, 67, 2469–2473. [Google Scholar] [CrossRef]
- World Flora Online (WFO) (2021): Zingiber montanum (J.Koenig) Link ex A.Dietr. Available online: http://www.worldfloraonline.org/taxon/wfo-0000617206 (accessed on 22 October 2021).
- Hassan, M.M.; Adhikari-Devkota, A.; Imai, T.; Devkota, H.P. Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh. Separations 2019, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.K. Zingiber montanum. In Edible Medicinal and Non-Medicinal Plants; Springer: Cham, Switzerland, 2016; Volume 12. [Google Scholar]
- Wolff, X.Y.; Astuti, I.P.; Brink, M. Zingiber GR Boehmer. In Plant Resources of South-East Asia 13: Spices; Backhuys Publishers: Kerkwerve, The Netherlands, 1999; pp. 233–238. [Google Scholar]
- Anasamy, T.; Abdul, A.B.; Sukari, M.A.; Abdelwahab, S.I.; Mohan, S.; Kamalidehghan, B.; Azid, M.Z.; Muhammad Nadzri, N.; Andas, A.; Kuan Beng, N. A phenylbutenoid dimer, cis-3-(3′,4′-dimethoxyphenyl)-4-[(E)-3′′′,4′′′-dimethoxystyryl] cyclohex-1-ene, exhibits apoptogenic properties in T-acute lymphoblastic leukemia cells via induction of p53-independent mitochondrial signalling pathway. Evid. Based Complement. Altern. Med. 2013, 2013, 939810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.M.; Mohammed, A.F.A.; Elamin, K.M.; Devkota, H.P.; Ohno, Y.; Motoyama, K.; Higashi, T.; Imai, T. Improvement of pharmaceutical properties of zerumbone, a multifunctional compound, using cyclodextrin derivatives. Chem. Pharm. Bull. 2020, 68, 1117–1120. [Google Scholar] [CrossRef] [PubMed]
- Foong, J.N.; Selvarajah, G.T.; Rasedee, A.; Rahman, H.S.; How, C.W.; Beh, C.Y.; Teo, G.Y.; Ku, C.L. Zerumbone-loaded nanostructured lipid carrier induces apoptosis of canine mammary adenocarcinoma cells. Biomed. Res. Int. 2018, 2018, 8691569. [Google Scholar] [CrossRef]
- Park, J.-H.; Park, G.M.; Kim, J.-K. Zerumbone, sesquiterpene photochemical from ginger, inhibits angiogenesis. Korean J. Physiol. Pharmacol. 2015, 19, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H.S.; Rasedee, A.; Abdul, A.B.; Zeenathul, N.A.; Othman, H.H.; Yeap, S.K.; How, C.W.; Hafiza, W.A.G.W.N. Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line. Int. J. Nanomed. 2014, 9, 527. [Google Scholar]
- Muhammad Nadzri, N.; Abdul, A.B.; Sukari, M.A.; Abdelwahab, S.I.; Eid, E.E.M.; Mohan, S.; Kamalidehghan, B.; Anasamy, T.; Ng, K.B.; Syam, S.; et al. Inclusion complex of zerumbone with hydroxypropyl-β-Cyclodextrin induces apoptosis in liver hepatocellular HepG2 Cells via caspase 8/BID cleavage switch and modulating Bcl2/Bax ratio. Evid. Based Complement. Altern. Med. 2013, 2013, 810632. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, M.R.; Perimal, E.K.; Akhtar, M.N.; Mohamad, A.S.; Khalid, M.H.; Tasrip, N.A.; Mokhtar, F.; Zakaria, Z.A.; Lajis, N.H.; Israf, D.A. Anti-inflammatory effect of zerumbone on acute and chronic inflammation models in mice. Fitoterapia 2010, 81, 855–858. [Google Scholar] [CrossRef]
- Girisa, S.; Shabnam, B.; Monisha, J.; Fan, L.; Halim, C.E.; Arfuso, F.; Ahn, K.S.; Sethi, G.; Kunnumakkara, A.B. Potential of Zerumbone as an Anti-Cancer Agent. Molecules 2019, 24, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.D.; Wang, Z.H.; Yan, H.Q.; Ren, M.Y.; Gao, S.Q.; Zhang, G.Q. Chemotherapeutic effect of Zerumbone on melanoma cells through mitochondria-mediated pathways. Clin. Exp. Dermatol. 2016, 41, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Al-Amin, M.; Sultana, G.N.N.; Hossain, C.F. Antiulcer principle from Zingiber montanum. J. Ethnopharmacol. 2012, 141, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Kato, E.; Kubo, M.; Okamoto, Y.; Matsunaga, Y.; Kyo, H.; Suzuki, N.; Uebaba, K.; Fukuyama, Y. Safety Assessment of Bangle (Zingiber purpureum Rosc.) Rhizome Extract: Acute and Chronic Studies in Rats and Clinical Studies in Human. ACS Omega 2018, 3, 15879–15889. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Lily, M.K.; Dangwal, K. Evaluation and comparison of polyphenols and bioactivities of wild edible fruits of North-West Himalaya, India. Asian Pac. J. Trop. Dis. 2015, 5, 888–893. [Google Scholar] [CrossRef]
- Pithayanukul, P.; Tubprasert, J.; Wuthi-Udomlert, M. In vitro antimicrobial activity of Zingiber cassumunar (Plai) oil and a 5% Plai oil gel. Phyther. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 164–169. [Google Scholar]
- Siddique, H.; Pendry, B.; Rahman, M.M. Terpenes from Zingiber montanum and their screening against multi-drug resistant and methicillin resistant Staphylococcus aureus. Molecules 2019, 24, 385. [Google Scholar] [CrossRef] [Green Version]
- Kasahara, S.; Henmi, S. Medicine Herb Index in Indonesia. Eisai Indones. 1986, 92, 92. [Google Scholar]
- Elliott, S.; Brimacombe, J. The medicinal plants of Gunung Leuser National Park, Indonesia. J. Ethnopharmacol. 1987, 19, 285–317. [Google Scholar] [CrossRef]
- Hsu, H.-Y.; Chen, Y.-P.; Jyl, S. Oriental Materia Medica: A Concise Guide; Oriental Healing Arts Institute: Los Angeles, CA, USA, 1986. [Google Scholar]
- Dymock, W. Pharmacographia Indica; Kegan Paul, Trench, Trubner & Co.: London, UK, 1983; Volume 3. [Google Scholar]
- Nayar, M.P.; Ramamurthy, K.; Agarwal, V.S. Economic Plants of India; Kailash Prakashan: Delhi, India, 1989. [Google Scholar]
- Tham, T.C.; Ng, M.X.; Gan, S.H.; Chua, L.S.; Aziz, R.; Abdullah, L.C.; Ong, S.P.; Chin, N.L.; Law, C.L. Impacts of different drying strategies on drying characteristics, the retention of bio-active ingredient and colour changes of dried Roselle. Chin. J. Chem. Eng. 2018, 26, 303–316. [Google Scholar] [CrossRef]
- Amatayakul, T.; Cannon, J.R.; Dampawan, P.; Dechatiwongse, T.; Giles, R.G.F.; Huntrakul, C.; Kusamran, K.; Mokkhasamit, M.; Rastton, C.L.; Reutrakul, V.; et al. Chemistry and crystal structures of some constituents of Zingiber cassumunar. Aust. J. Chem. 1979, 32, 71–88. [Google Scholar] [CrossRef]
- Cheechareoan, S.; Pathanawiriyasirikul, T.; Manmee, C.; Janpol, K. Efficacy of Plai cream in adult patients with muscle strain: A randomized, double-blind, placebo-controlled trial. J. Med. Assoc. Thai. 2016, 99, S147–S152. [Google Scholar]
- Chienthavorn, O.; Poonsukcharoen, T.; Pathrakorn, T. Pressurized Liquid and Superheated Water Extraction of Active Constituents from Zingiber Cassumunar Roxb. Rhizome; Kasetsart University: Bangkok, Thailand, 2011; Volume 46, ISBN 9742747431. [Google Scholar]
- Manimmanakorn, N.; Manimmanakorn, A.; Boobphachart, D.; Thuwakum, W.; Laupattarakasem, W.; Hamlin, M.J. Effects of Zingiber cassumunar (Plai cream) in the treatment of delayed onset muscle soreness. J. Integr. Med. 2016, 14, 114–120. [Google Scholar] [CrossRef]
- Srirochana, S. Efficacy of Plai Cream Compared with Diclofenac Gel in Osteoarthritis of Knee. Mahasarakham Hosp. J. 2010, 7, 53–60. [Google Scholar]
- Jain, S.K.; Tarafder, C.R. Medicinal plant-lore of the santals. Econ. Bot. 1970, 24, 241–278. [Google Scholar] [CrossRef]
- Oliveros, M.B. Preformulation studies on terpinen-4-ol from Zingiber purpureum Rosc. In Proceedings of the 2nd Symposium on the Family Zingiberaceae; Wu, T.L., Wu, Q.G., Chen, Z.Y., Eds.; Zhongshan University Press: Guangzhou, China, 1996; pp. 180–186. [Google Scholar]
- Chaiwongsa, R.; Ongchai, S.; Boonsing, P.; Kongtawelert, P.; Panthong, A.; Reutrakul, V. Active compound of Zingiber cassumunar Roxb. down-regulates the expression of genes involved in joint erosion in a human synovial fibroblast cell line. Afr. J. Tradit. Complement. Altern. Med. 2012, 10, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joram, A.; Das, A.K.; Mahanta, D. Evaluation of antioxidant and phenolic contents of Zingiber montanum (J.Koenig) Link ex Dietr.: A potential ethomedicinal plant of Arunachal Pradesh, India. Pleione 2018, 12, 255. [Google Scholar] [CrossRef]
- Majaw, S.; Moirangthem, J. Qualitative and Quantitative Analysis of Clerodendron colebrookianum Walp. Leaves and Zingiber cassumunar Roxb. Rhizomes. Ethnobot. Leafl. 2009, 2009, 3. [Google Scholar]
- Kantayos, V.; Paisooksantivatana, Y. Antioxidant Activity and selected chemical components if 10 Zinger spp. In Thailand. J. Dev. Sustain. Argic 2012, 7, 89–96. [Google Scholar]
- Bhuiyan, M.N.I.; Chowdhury, J.U.; Begum, J. Volatile constituents of essential oils isolated from leaf and rhizome of Zingiber cassumunar Roxb. Bangladesh J. Pharmacol. 2008, 3, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.S.; Joshi, N.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Verma, S.K.; Iqbal, H.; Chanda, D.; Verma, R.K.; Darokar, M.P.; et al. Chemical composition and antibacterial, antifungal, allelopathic and acetylcholinesterase inhibitory activities of cassumunar-ginger. J. Sci. Food Agric. 2018, 98, 321–327. [Google Scholar] [CrossRef]
- Taechowisan, T.; Suttichokthanakorn, S.; Phutdhawong, W.S. Antibacterial and cytotoxicity activities of phenylbutanoids from Zingiber cassumunar Roxb. J. Appl. Pharm. Sci. 2018, 8, 121–127. [Google Scholar]
- Tuntiwachwuttikul, P.; Pancharoen, O.; Jaipetch, T.; Reutrakul, V. Phenylbutanoids from Zingiber cassumunar. Phytochemistry 1981, 20, 1164–1165. [Google Scholar] [CrossRef]
- Kuroyanagi, M.; Fukushima, S.; Yoshihira, K.; Natori, S.; Dechatiwongse, T.; Mihashi, K.; Nishi, M.; Hara, S. Further Characterization of the Constituents of a Thai Medicinal Plant, Zingiber cassumunar ROXB. Chem. Pharm. Bull. 1980, 28, 2948–2959. [Google Scholar] [CrossRef] [Green Version]
- Dinter, H.; Hänsel, R.; Pelter, A. The Structures of Cassum unaquinones 1 and 2 from Zingiber cassumunar. Z. Für Naturforsch. C 1980, 35, 154–155. [Google Scholar] [CrossRef]
- Dinter, H.; Hänsel, R.; Pelter, A. Isolation of Two Phenylbutadiene Dimers and One Monomeric 4-Phenylbut-3-ene from Zingiber cassumunar (roxb.). Z. Für Naturforsch. C 1980, 35, 156–158. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, Y.; Kawahara, N.; Harada, M. Anti-inflammatory Effect of Zingiber cassumunar ROXB. and Its Active Principles. Chem. Pharm. Bull. 2011, 39, 2353–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, T.; Jitoe, A.; Nakatani, N. Structures of Cassumunin A, B, and C, New Potent Antioxidants from Zingiber cassumunar. Chem. Lett. 2006, 22, 189–192. [Google Scholar] [CrossRef]
- Jitoe, A.; Masuda, T.; Mabry, T.J. Novel Antioxidants, Cassumunarin A, B, and C, from Zingiber cassumunar. Tetrahedron Lett. 1994, 35, 981–984. [Google Scholar] [CrossRef]
- Jitoe, A.; Masuda, T.; Nakatani, N. Phenylbutenoid dimers from the rhizomes of Zingiber cassumunar. Phytochemistry 1993, 32, 357–363. [Google Scholar] [CrossRef]
- Masuda, T.; Jitoe, A. Phenylbutenoid monomers from the rhizomes of Zingiber cassumunar. Phytochemistry 1995, 39, 459–461. [Google Scholar] [CrossRef]
- Pongprayoon, U.; Soontornsaratune, P.; Jarikasem, S.; Sematong, T.; Wasuwat, S.; Claeson, P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part I: The essential oil. Phytomedicine 1997, 3, 319–322. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, C.; Wang, Y.; Pan, Y. Preparative isolation and purification of two phenylbutenoids from the rhizomes of Zingiber cassumunar by upright counter-current chromatography. J. Chromatogr. A 2005, 1089, 258–262. [Google Scholar] [CrossRef]
- Nakamura, S.; Iwami, J.; Matsuda, H.; Wakayama, H.; Pongpiriyadacha, Y.; Yoshikawa, M. Structures of New Phenylbutanoids and Nitric Oxide Production Inhibitors from the Rhizomes of Zingiber cassumunar. Chem. Pharm. Bull. 2009, 57, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, H.; Nakamura, S.; Iwami, J.; Li, X.; Pongpiriyadacha, Y.; Nakai, M.; Kubo, M.; Fukuyama, Y.; Yoshikawa, M. Invasion Inhibitors of Human Fibrosarcoma HT 1080 Cells from the Rhizomes of Zingiber cassumunar: Structures of Phenylbutanoids, Cassumunols. Chem. Pharm. Bull. 2011, 59, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Han, A.R.; Min, H.Y.; Windono, T.; Jeohn, G.H.; Jang, D.S.; Lee, S.K.; Seo, E.K. A new cytotoxic phenylbutenoid dimer from the rhizomes of Zingiber cassumunar. Planta Med. 2004, 70, 1095–1097. [Google Scholar] [CrossRef] [PubMed]
- Han, A.R.; Kim, M.S.; Jeong, Y.H.; Lee, S.K.; Seo, E.K. Cyclooxygenase-2 inhibitory phenylbutenoids from the rhizomes of Zingiber cassumunar. Chem. Pharm. Bull. 2005, 53, 1466–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panthong, A.; Kanjanapothi, D.; Niwatananant, W.; Tuntiwachwuttikul, P.; Reutrakul, V. Anti-inflammatory activity of compound D {(E)-4-(3′,4′-dimethoxyphenyl)but-3-en-2-ol} isolated from Zingiber cassumunar Roxb. Phytomedicine 1997, 4, 207–212. [Google Scholar] [CrossRef]
- Chaiyana, W.; Anuchapreeda, S.; Leelapornpisid, P.; Phongpradist, R.; Viernstein, H.; Mueller, M. Development of microemulsion delivery system of essential oil from Zingiber cassumunar Roxb. rhizome for improvement of stability and anti-inflammatory activity. AAPS PharmSciTech 2017, 18, 1332–1342. [Google Scholar] [CrossRef]
- Jiang, H.; Xie, Z.; Koo, H.J.; McLaughlin, S.P.; Timmermann, B.N.; Gang, D.R. Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry 2006, 67, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Jantan, I.b.; Yassin, M.S.M.; Chin, C.B.; Chen, L.L.; Sim, N.L. Antifungal Activity of the Essential Oils of Nine Zingiberaceae Species. Pharm. Biol. 2003, 41, 392–397. [Google Scholar] [CrossRef]
- Crop, T.F.; Thammarat, N.S. Screening for Plant Extract, Antagonistic Microorganism and Fungicides to Control Ganoderma boninense Caused Stem Rot of Oil Palm in Vitro. Int. J. Agric. Technol. 2017, 13, 141–147. [Google Scholar]
- Tripathi, P.; Dubey, N.K.; Shukla, A.K. Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World J. Microbiol. Biotechnol. 2008, 24, 39–46. [Google Scholar] [CrossRef]
- Sharma, G.J.; Chirangini, Z.A.; Mishra, K.P. Evaluation of antioxidant and cytotoxic properties of tropical ginger, Zingiber montanum (J. Konig) A Dietr. Gard. Bull. Singap. 2007, 59, 189–202. [Google Scholar]
- Indrianingsih, A.W.; Prihantini, A.I.; Indrianingsih, A.W.; Prihantini, A.I. In vitro antioxidant and α-glucosidase inhibitory assay of Zingiber cassumunar roxb. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 2026, p. 20005. [Google Scholar]
- Masuda, T.; Jitoe, A. Antioxidative and Antiinflammatory Compounds from Tropical Gingers: Isolation, Structure Determination, and Activities of Cassumunins A, B, and C, New Complex Curcuminoids from Zingiber cassumunar. J. Agric. Food Chem. 1994, 42, 1850–1856. [Google Scholar] [CrossRef]
- Bua-in, S.; Paisooksantivatana, Y. Essential Oil and Antioxidant Activity of Cassumunar Ginger (Zingiberaceae: Zingiber montanum (Koenig) Link ex Dietr.) Collected from Various Parts of Thailand. Kasetsart J. (Nat. Sci.) 2009, 43, 467–475. [Google Scholar]
- Jena, A.K.; Sahoo, R.K.; Subudhi, E.; Ghosh, G.; Subudhi, B.B.; Nayak, S. Studies on antioxidant, antimicrobial and phytochemical analysis of Zingiber capitatum roxb. Rhizome extracts. Int. J. Integr. Biol. 2011, 11, 127–133. [Google Scholar]
- Boonyanugomol, W.; Kraisriwattana, K.; Rukseree, K.; Boonsam, K.; Narachai, P. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J. Infect. Public Health 2017, 10, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Lamlertthon, S.; Tiyaboonchai, W. Antimicrobial activity of essential oils against five strains of Propionibacterium acnes. Mahidol Univ. J. Pharm. Sci. 2007, 34, 60–64. [Google Scholar]
- Manimmanakorn, N.; Manimmanakorn, A.; Boobphachart, D.; Thuwakum, W.; Laupattarakasem, W.; Hamlin, M.J. Effects of Plai cream [Zingiber montanum (J.Koenig) Link ex A.Dietr. syn. Zingiber cassumunar Roxb.] combined with ultrasound on delayed muscle soreness. Indian J. Trait. Knowl. 2017, 16, 442–447. [Google Scholar]
- Koparde, A.A.; Magdum, C.S. Analgesic activity of extracts of Eulophia ochreata Lindl. and Zingiber cassumunar Roxb. in animal model. Int. J. Pharm. Sci. Res. 2018, 9, 1956–1962. [Google Scholar]
- Yuniarto, A.; Susilawati, E.; Rahman, T.A.; Setiawan, F.; Juanda, D. Gastric Ulcer Healing Effect of Bangle (Zingiber cassumunar (Roxb.)) Rhizome Extract in Aspirin-induced Rats Model. Indones. J. Pharm. Sci. Technol. 2017, 1, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Subhadhirasakul, S.; Tewtrakul, S. Anti-allergic activity of some selected plants in the Zingiberaceae family. J. Ethnopharmacol. 2007, 109, 535–538. [Google Scholar]
- Tanticharoenwiwat, P.; Kulalert, P.; Dechatiwongse Na Ayudhya, T.; Koontongkaew, S.; Jiratchariyakul, W.; Soawakontha, R.; Booncong, P.; Poachanukoon, O. Inhibitory effect of Phlai capsules on skin test responses among allergic rhinitis patients: A randomized, three-way crossover study. J. Integr. Med. 2017, 15, 462–468. [Google Scholar] [CrossRef]
- Zulkhairi, A.M.; Aspollah, S.M.; Lian, E.G.C.; Bustamam, A.A. Phytochemicals and cytotoxic studies of Zingiber cassumunar Roxb. J. Trop. Agric. Fd. Sc. 2017, 45, 187–197. [Google Scholar]
- Dulpinijthamma, J.; Poachanukoon, O.; Saiphoklang, N. The effect of Zingiber cassumunar (Phlai capsule) on bronchial hyperresponsiveness in asthmatic patients. J. Allergy Clin. Immunol. 2020, 145, AB20. [Google Scholar] [CrossRef]
- Limvuttegrijerat, T.; Poachanukoon, O.; Koontongkaew, S.; Ayudhya, T.D.N. Crude ethanolic extracts of Zingiber cassumunar ROXB. inhibit PMA-induced MUC2 and MUC5AC expression via ERK inhibition in human airway epithelial cells. Asian Pac. J. Allergy Immunol. 2014, 32, 328. [Google Scholar]
- Bandara, K.A.N.P.; Kumar, V.; Saxena, R.C.; Ramdas, P.K. Bruchid (Coleoptera: Bruchidae) ovicidal phenylbutanoid from Zingiber purpureum. J. Econ. Entomol. 2005, 98, 1163–1169. [Google Scholar] [CrossRef]
- Okonogi, S.; Chaiyana, W. Enhancement of anti-cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique. Drug Discov. Ther. 2012, 6, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Dev, S. Studies in sesquiterpenes-XVI. Zerumbone, a monocyclic sesquiterpene ketone. Tetrahedron 1960, 8, 171–180. [Google Scholar] [CrossRef]
- Kitayama, T.; Okamoto, T.; Hill, R.K.; Kawai, Y.; Takahashi, S.; Yonemori, S.; Yamamoto, Y.; Ohe, K.; Uemura, S.; Sawada, S. Chemistry of Zerumbone. 1. Simplified isolation, conjugate addition reactions, and a unique ring contracting transannular reaction of its dibromide. J. Org. Chem. 1999, 64, 2667–2672. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Jitoe, A.; Kato, S.; Nakatani, N. Acetylated flavonol glycosides from Zingiber zerumbet. Phytochemistry 1991, 30, 2391–2392. [Google Scholar] [CrossRef]
- Chien, T.Y.; Chen, L.G.; Lee, C.J.; Lee, F.Y.; Wang, C.C. Anti-inflammatory constituents of Zingiber zerumbet. Food Chem. 2008, 110, 584–589. [Google Scholar] [CrossRef]
- Ruslay, S.; Abas, F.; Shaari, K.; Zainal, Z.; Maulidiani; Sirat, H.; Israf, D.A.; Lajis, N.H. Characterization of the components present in the active fractions of health gingers (Curcuma xanthorrhiza and Zingiber zerumbet) by HPLC-DAD-ESIMS. Food Chem. 2007, 104, 1183–1191. [Google Scholar] [CrossRef]
- Dai, J.R.; Cardellina, J.H.; McMahon, J.B.; Boyd, M.R. Zerumbone, an HIV-inhibitory and cytotoxic sesquiterpene of Zingiber aromaticum and Z. zerumbet. Nat. Prod. Lett. 1997, 10, 115–118. [Google Scholar] [CrossRef]
- Rahman, H.S.; Rasedee, A.; Yeap, S.K.; Othman, H.H.; Chartrand, M.S.; Namvar, F.; Abdul, A.B.; How, C.W. Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. BioMed Res. Int. 2014, 2014, 920742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadhu, S.K.; Khatun, A.; Ohtsuki, T.; Ishibashi, M. First isolation of sesquiterpenes and flavonoids from Zingiber spectabile and identification of zerumbone as the major cell growth inhibitory component. Nat. Prod. Res. 2007, 21, 1242–1247. [Google Scholar] [CrossRef]
- Kalantari, K.; Moniri, M.; Moghaddam, A.B.; Rahim, R.A.; Ariff, A.B.; Izadiyan, Z.; Mohamad, R. A Review of the biomedical applications of zerumbone and the techniques for its extraction from ginger rhizomes. Molecules 2017, 22, 1645. [Google Scholar] [CrossRef] [Green Version]
- Sehrawat, A.; Sakao, K.; Singh, S.V. Notch2 activation is protective against anticancer effects of zerumbone in human breast cancer cells. Breast Cancer Res. Treat. 2014, 146, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Ohnishi, K.; Murakami, A.; Lee, J.S.; Kundu, J.K.; Na, H.K.; Ohigashi, H.; Surh, Y.J. Zerumbone induces heme oxygenase-1 expression in mouse skin and cultured murine epidermal cells through activation of Nrf2. Cancer Prev. Res. 2011, 4, 860–870. [Google Scholar] [CrossRef] [Green Version]
- Saranya, J.; Dhanya, B.P.; Greeshma, G.; Radhakrishnan, K.V.; Priya, S. Effects of a new synthetic zerumbone pendant derivative (ZPD) on apoptosis induction and anti-migratory effects in human cervical cancer cells. Chem. Biol. Interact. 2017, 278, 32–39. [Google Scholar] [CrossRef]
- Agide, F.D.; Sadeghi, R.; Garmaroudi, G.; Tigabu, B.M. A systematic review of health promotion interventions to increase breast cancer screening uptake: From the last 12 years. Eur. J. Public Health 2018, 28, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, S.M.; Sebastian, J.; Rathinasamy, K. Zerumbone, a cyclic sesquiterpene, exerts antimitotic activity in HeLa cells through tubulin binding and exhibits synergistic activity with vinblastine and paclitaxel. Cell Prolif. 2019, 52, e12558. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.; Caprioglio, D.; Isola, R.; Nieddu, M.; Appendino, G.; Falchi, A.M. Dietary zerumbone from shampoo ginger: New insights into its antioxidant and anticancer activity. Food Funct. 2019, 10, 1629–1642. [Google Scholar] [CrossRef]
- Utaka, Y.; Kashiwazaki, G.; Tajima, S.; Fujiwara, Y.; Sumi, K.; Itoh, T.; Kitayama, T. Antiproliferative effects of zerumbone-pendant derivatives on human T-cell lymphoid cell line Jurkat cells. Tetrahedron 2019, 75, 1343–1350. [Google Scholar] [CrossRef]
- Wang, M.; Niu, J.; Gao, L.; Gao, Y.; Gao, S. Zerumbone inhibits migration in ESCC via promoting Rac1 ubiquitination. Biomed. Pharmacother. 2019, 109, 2447–2455. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.E.; Abu, N.; Rahman, H.S.; Ky, H.; Ho, W.Y.; Lim, K.L.; How, C.W.; Rasedee, A.; Alitheen, N.B.; Yeap, S.K. Nanostructured lipid carrier improved in vivo anti-tumor and immunomodulatory effect of Zerumbone in 4T1 challenged mice. RSC Adv. 2015, 5, 22066–22074. [Google Scholar] [CrossRef]
- Sithara, T.; Dhanya, B.P.; Arun, K.B.; Sini, S.; Dan, M.; Kokkuvayil Vasu, R.; Nisha, P. Zerumbone, a Cyclic Sesquiterpene from Zingiber zerumbet Induces Apoptosis, Cell Cycle Arrest, and Antimigratory Effects in SW480 Colorectal Cancer Cells. J. Agric. Food Chem. 2018, 66, 602–612. [Google Scholar] [CrossRef]
- Tan, J.W.; Israf, D.A.; Tham, C.L. Major bioactive compounds in essential oils extracted from the rhizomes of Zingiber zerumbet (L.) Smith: A mini-review on the anti-allergic and immunomodulatory properties. Front. Pharmacol. 2018, 9, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eid, E.E.M.; Azam, F.; Hassan, M.; Taban, I.M.; Halim, M.A. Zerumbone binding to estrogen receptors: An in-silico investigation. J. Recept. Signal. Transduct. 2018, 38, 342–351. [Google Scholar] [CrossRef]
- Abdel Wahab, S.I.; Abdul, A.B.; Alzubairi, A.S.; Mohamed Elhassan, M.; Mohan, S. In Vitro Ultramorphological Assessment of Apoptosis Induced by Zerumbone on (HeLa). J. Biomed. Biotechnol. 2009, 2009, 769568. [Google Scholar] [CrossRef]
- Kang, C.G.; Lee, H.-J.; Kim, S.-H.; Lee, E.-O. Zerumbone Suppresses Osteopontin-Induced Cell Invasion Through Inhibiting the FAK/AKT/ROCK Pathway in Human Non-Small Cell Lung Cancer A549 Cells. J. Nat. Prod. 2016, 79, 156–160. [Google Scholar] [CrossRef]
- Hu, Z.; Zeng, Q.; Zhang, B.; Liu, H.; Wang, W. Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells. Biochimie 2014, 107, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Jorvig, J.E.; Chakraborty, A. Zerumbone inhibits growth of hormone refractory prostate cancer cells by inhibiting JAK2/STAT3 pathway and increases paclitaxel sensitivity. Anticancer. Drugs 2015, 26, 160–166. [Google Scholar] [CrossRef]
- Jeon, M.; Han, J.; Nam, S.J.; Lee, J.E.; Kim, S. Elevated IL-1β expression induces invasiveness of triple negative breast cancer cells and is suppressed by zerumbone. Chem. Biol. Interact. 2016, 258, 126–133. [Google Scholar] [CrossRef]
- Hosseini, N.; Khoshnazar, A.; Saidijam, M.; Azizi Jalilian, F.; Najafi, R.; Mahdavinezhad, A.; Ezati, R.; Sotanian, A.; Amini, R. Zerumbone Suppresses Human Colorectal Cancer Invasion and Metastasis via Modulation of FAk/PI3k/NFκB-uPA Pathway. Nutr. Cancer 2019, 71, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.C.; Chien, T.Y.; Chen, L.G.; Wang, C.C. Antitumor effects of zerumbone from Zingiber zerumbet in P-388D1 cells in vitro and in vivo. Planta Med. 2005, 71, 219–224. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Liu, Y.; Qiao, H.; Liu, Y. Zerumbone, a Southeast Asian ginger sesquiterpene, induced apoptosis of pancreatic carcinoma cells through p53 signaling pathway. Evid.-Based Complement. Altern. Med. 2012, 2012, 936030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eid, E.E.M.; Alanazi, A.S.; Koosha, S.; Alrasheedy, A.A.; Azam, F.; Taban, I.M.; Khalilullah, H.; Sadiq Al-Qubaisi, M.; Alshawsh, M.A. Zerumbone Induces Apoptosis in Breast Cancer Cells by Targeting αvβ3 Integrin upon Co-Administration with TP5-iRGD Peptide. Molecules 2019, 24, 2554. [Google Scholar] [CrossRef] [Green Version]
- Abdelwahab, S.I.; Abdul, A.B.; Mohan, S.; Taha, M.M.E.; Syam, S.; Ibrahim, M.Y.; Mariod, A.A. Zerumbone induces apoptosis in T-acute lymphoblastic leukemia cells. Leuk. Res. 2011, 35, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.-L.; Liang, J.-W.; Hsu, L.-C.; Chang, W.-L.; Lee, S.-S.; Guh, J.-H. Zerumbone, a ginger sesquiterpene, induces apoptosis and autophagy in human hormone-refractory prostate cancers through tubulin binding and crosstalk between endoplasmic reticulum stress and mitochondrial insult. Naunyn. Schmiedeberg’s Arch. Pharmacol. 2015, 388, 1223–1236. [Google Scholar] [CrossRef] [PubMed]
- Dermani, F.K.; Amini, R.; Saidijam, M.; Pourjafar, M.; Saki, S.; Najafi, R. Zerumbone inhibits epithelial-mesenchymal transition and cancer stem cells properties by inhibiting the β-catenin pathway through miR-200c. J. Cell. Physiol. 2018, 233, 9538–9547. [Google Scholar] [CrossRef]
- Ma, S.; Lei, Y.; Zhang, L.; Wang, J. Effects of zerumbone on proliferation and apoptosis of esophageal cancer cells and on P53 and Bcl-2 expression levels. Oncol. Lett. 2018, 16, 4379–4383. [Google Scholar] [CrossRef] [Green Version]
- Murakami, A. Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: The alpha, beta-unsaturated carbonyl group is a prerequisite. Carcinogenesis 2002, 23, 795–802. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kil, W.H.; Lee, J.; Oh, S.-J.; Han, J.; Jeon, M.; Jung, T.; Lee, S.K.; Bae, S.Y.; Lee, H.C. Zerumbone suppresses EGF-induced CD44 expression through the inhibition of STAT3 in breast cancer cells. Oncol. Rep. 2014, 32, 2666–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Lee, J.; Jeon, M.; Lee, J.E.; Nam, S.J. Zerumbone suppresses the motility and tumorigenecity of triple negative breast cancer cells via the inhibition of TGF-β1 signaling pathway. Oncotarget 2016, 7, 1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, T.; Zhang, W.; Han, X. Zerumbone suppresses the potential of growth and metastasis in hepatoma HepG2 cells via the MAPK signaling pathway. Oncol. Lett. 2018, 15, 7603–7610. [Google Scholar] [CrossRef] [PubMed]
- Jegannathan, S.D.; Arul, S.; Dayalan, H. Zerumbone, a Sesquiterpene, Controls Proliferation and Induces Cell Cycle Arrest in Human Laryngeal Carcinoma Cell Line Hep-2. Nutr. Cancer 2016, 68, 865–872. [Google Scholar] [CrossRef]
- Kim, M.; Miyamoto, S.; Yasui, Y.; Oyama, T.; Murakami, A.; Tanaka, T. Zerumbone, a tropical ginger sesquiterpene, inhibits colon and lung carcinogenesis in mice. Int. J. Cancer 2009, 124, 264–271. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Abdul, A.B.; Devi, N.; Ehassan Taha, M.M.; Al-zubairi, A.S.; Mohan, S.; Mariod, A.A. Regression of cervical intraepithelial neoplasia by zerumbone in female Balb/c mice prenatally exposed to diethylstilboestrol: Involvement of mitochondria-regulated apoptosis. Exp. Toxicol. Pathol. 2010, 62, 461–469. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Abdul, A.B.; Zain, Z.N.M.; Hadi, A.H.A. Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells. Int. Immunopharmacol. 2012, 12, 594–602. [Google Scholar] [CrossRef]
- Abdul, A.B.; Abdelwahab, S.I.; Jalinas, J.B.; Al-Zubairi, A.S.; Taha, M.M.E. Combination of zerumbone and cisplatin to treat cervical intraepithelial neoplasia in female BALB/c mice. Int. J. Gynecol. Cancer 2009, 19, 1004–1010. [Google Scholar] [CrossRef]
- Abdul, A.B.; Abdelwahab, S.I.; Al-Zubaira, A.S.; Elhassan, M.M.; Murali, S.M. Anticancer and antimicrobial activities of zerumbone from the rhizomes of Zingiber zerumbut. Int. J. Pharmacol. 2008, 4, 301–304. [Google Scholar] [CrossRef]
- Adbul, A.B.H.; Al-Zubairi, A.S.; Tailan, N.D.; Wahab, S.I.A.; Zain, Z.N.M.; Rusley, S.; Syam, M.M. Anticancer activity of natural compound (Zerumbone) extracted from Zingiber zerumbet in human HeLa cervical cancer cells. Int. J. Pharmacol. 2008, 4, 160–168. [Google Scholar]
- Sakinah, S.A.S.; Tri Handayani, S.; Hawariah, L.P.A. Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio. Cancer Cell Int. 2007, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Al-Amin, M.; Eltayeb, N.M.; Khairuddean, M.; Salhimi, S.M. Bioactive chemical constituents from Curcuma caesia Roxb. rhizomes and inhibitory effect of curcuzederone on the migration of triple-negative breast cancer cell line MDA-MB-231. Nat. Prod. Res. 2019, 3166–3170. [Google Scholar] [CrossRef] [PubMed]
- Samad, N.A.; Abdul, A.B.; Rahman, H.S.; Rasedee, A.; Ibrahim, T.A.T.; Keon, Y.S. Zerumbone suppresses angiogenesis in HepG2 cells through inhibition of matrix metalloproteinase-9, vascular endothelial growth factor, and vascular endothelial growth factor receptor expressions. Pharmacogn. Mag. 2017, 13, S731. [Google Scholar]
- Sehrawat, A.; Arlotti, J.A.; Murakami, A.; Singh, S.V. Zerumbone causes Bax- and Bak-mediated apoptosis in human breast cancer cells and inhibits orthotopic xenograft growth in vivo. Breast Cancer Res. Treat. 2012, 136, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Shamoto, T.; Matsuo, Y.; Shibata, T.; Tsuboi, K.; Nagasaki, T.; Takahashi, H.; Funahashi, H.; Okada, Y.; Takeyama, H. Zerumbone inhibits angiogenesis by blocking NF-κB activity in pancreatic cancer. Pancreas 2014, 43, 396–404. [Google Scholar] [CrossRef]
- Shanmugam, M.K.; Rajendran, P.; Li, F.; Kim, C.; Sikka, S.; Siveen, K.S.; Kumar, A.P.; Ahn, K.S.; Sethi, G. Abrogation of STAT3 signaling cascade by zerumbone inhibits proliferation and induces apoptosis in renal cell carcinoma xenograft mouse model. Mol. Carcinog. 2015, 54, 971–985. [Google Scholar] [CrossRef]
- Zainal, N.S.; Gan, C.P.; Lau, B.F.; Yee, P.S.; Tiong, K.H.; Abdul Rahman, Z.A.; Patel, V.; Cheong, S.C. Zerumbone targets the CXCR4-RhoA and PI3K-mTOR signaling axis to reduce motility and proliferation of oral cancer cells. Phytomedicine 2018, 39, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Shyanti, R.K.; Sehrawat, A.; Singh, S.V.; Mishra, J.P.N.; Singh, R.P. Zerumbone modulates CD1d expression and lipid antigen presentation pathway in breast cancer cells. Toxicol. Vitr. 2017, 44, 74–84. [Google Scholar] [CrossRef]
- Rahman, H.S.; Rasedee, A.; How, C.W.; Zeenathul, N.A.; Chartrand, M.S.; Yeap, S.K.; Abdul, A.B.; Tan, S.W.; Othman, H.H.; Ajdari, Z. Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model. Int. J. Nanomed. 2015, 10, 1649. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, Y.; Cui, P.; Zhao, Q.; Tan, B.; Zhang, Z.; Liu, Y.; Jia, N. Zerumbone induces gastric cancer cells apoptosis: Involving cyclophilin A. Biomed. Pharmacother. 2016, 83, 740–745. [Google Scholar] [CrossRef]
- Wani, N.A.; Zhang, B.; Teng, K.; Barajas, J.M.; Motiwala, T.; Hu, P.; Yu, L.; Brüschweiler, R.; Ghoshal, K.; Jacob, S.T. Reprograming of glucose metabolism by zerumbone suppresses hepatocarcinogenesis. Mol. Cancer Res. 2018, 16, 256–268. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.-Y.; Hsu, M.-J.; Wang, C.-C.; Chen, B.-C.; Hong, C.-Y.; Chen, M.-C.; Chiu, W.-T.; Lin, C.-H. Zerumbone suppresses IKKα, Akt, and FOXO1 activation, resulting in apoptosis of GBM 8401 cells. J. Biomed. Sci. 2012, 19, 86. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Ren, M.; Wang, Z.; Feng, S.; Li, S.; Cheng, Y.; Hu, C.; Gao, S.; Zhang, G. Zerumbone inhibits melanoma cell proliferation and migration by altering mitochondrial functions. Oncol. Lett. 2017, 13, 2397–2402. [Google Scholar] [CrossRef] [Green Version]
- Rajan, I.; Jayasree, P.R.; Kumar, P.R.M. Zerumbone induces mitochondria-mediated apoptosis via increased calcium, generation of reactive oxygen species and upregulation of soluble histone H2AX in K562 chronic myelogenous leukemia cells. Tumor Biol. 2015, 36, 8479–8489. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Yun, J.M. Molecular mechanism of the protective effect of zerumbone on lipopolysaccharide-induced inflammation of THP-1 cell-derived macrophages. J. Med. Food 2019, 22, 62–73. [Google Scholar] [CrossRef]
- Ho, Y.C.; Lee, S.S.; Yang, M.L.; Huang-Liu, R.; Lee, C.Y.; Li, Y.C.; Kuan, Y.H. Zerumbone reduced the inflammatory response of acute lung injury in endotoxin-treated mice via Akt-NFκB pathway. Chem. Biol. Interact. 2017, 271, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Somchit, M.N.; Mak, J.H.; Bustamam, A.A.; Zuraini, A.; Arifah, A.K.; Adam, Y.; Zakaria, Z.A. Zerumbone isolated from Zingiber zerumbet inhibits inflammation and pain in rats. J. Med. Plants Res. 2012, 6, 177–180. [Google Scholar] [CrossRef]
- Igarashi, Y.; Ohnishi, K.; Irie, K.; Murakami, A. Possible contribution of zerumbone-induced proteo-stress to its anti-inflammatory functions via the activation of heat shock factor 1. PLoS ONE 2016, 11, e0161282. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Jo, M.; Hong, E.J.; Park, O.C.; Lee, G.C.; Yun, M.; Rhee, K.-J. Zerumbone Suppresses Enterotoxigenic Bacteroides fragilis Infection-Induced Colonic Inflammation through Inhibition of NF-κΒ. Int. J. Mol. Sci. 2019, 20, 4560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, M.A.; Jantan, I.; Harikrishnan, H. Zerumbone suppresses the activation of inflammatory mediators in LPS-stimulated U937 macrophages through MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways. Int. Immunopharmacol. 2018, 55, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Chen, S.-P.; Su, C.-H.; Ho, Y.-C.; Yang, M.-L.; Lee, S.-S.; Huang, L.R.; Yang, C.-P.; Chan, C.J.; Kuan, Y.-H. Zerumbone from Zingiber zerumbet ameliorates lipopolysaccharide-induced ICAM-1 and cytokines expression via p38 MAPK/JNK-IκB/NF-κB pathway in mouse model of acute lung injury. Chin. J. Physiol. 2018, 61, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Leung, W.-S.; Yang, M.-L.; Lee, S.-S.; Kuo, C.-W.; Ho, Y.-C.; Huang-Liu, R.; Lin, H.-W.; Kuan, Y.-H. Protective effect of zerumbone reduces lipopolysaccharide-induced acute lung injury via antioxidative enzymes and Nrf2/HO-1 pathway. Int. Immunopharmacol. 2017, 46, 194–200. [Google Scholar] [CrossRef]
- Murakami, A.; Matsumoto, K.; Koshimizu, K.; Ohigashi, H. Effects of selected food factors with chemopreventive properties on combined lipopolysaccharide- and interferon-γ-induced IκB degradation in RAW264.7 macrophages. Cancer Lett. 2003, 195, 17–25. [Google Scholar] [CrossRef]
- Murakami, A.; Shigemori, T.; Ohigashi, H. Zingiberaceous and citrus constituents, 1′-acetoxychavicol acetate, zerumbone, auraptene, and nobiletin, suppress lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264. 7 murine macrophages through different modes of action. J. Nutr. 2005, 135, 2987S–2992S. [Google Scholar] [CrossRef] [Green Version]
- Rücker, H.; Amslinger, S. Identification of heme oxygenase-1 stimulators by a convenient ELISA-based bilirubin quantification assay. Free Radic. Biol. Med. 2015, 78, 135–146. [Google Scholar] [CrossRef]
- Vishwanatha, H.N.; Niraguna Babu, P.; Gowrishankar, B.S.; Sridhar, S.B. Antimicrobial activity of zerumbone from Zingiber zerumbet against Staphylococcus epidermis and Aspergillus sp. Int. J. Appl. Biol. Pharm. Tech. 2012, 3, 40–43. [Google Scholar]
- Kim, H.R.; Rhee, K.J.; Eom, Y. Bin Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe 2019, 57, 99–106. [Google Scholar] [CrossRef]
- Moreira Da Silva, T.; Pinheiro, C.D.; Puccinelli Orlandi, P.; Pinheiro, C.C.; Soares Pontes, G. Zerumbone from Zingiber zerumbet (L.) smith: A potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans. BMC Complement. Altern. Med. 2018, 18, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitayama, T.; Yamamoto, K.; Utsumi, R.; Takatani, M.; Hill, R.K.; Kawai, Y.; Sawada, S.; Okamoto, T. Chemistry of zerumbone. 2. Regulation of ring bond cleavage and unique antibacterial activities of zerumbone derivatives. Biosci. Biotechnol. Biochem. 2001, 65, 2193–2199. [Google Scholar] [CrossRef] [PubMed]
- Keong, Y.S.; Alitheen, N.B.; Mustafa, S.; Aziz, S.A.; Rahman, M.A.; Ali, A.M. Immunomodulatory effects of zerumbone isolated from roots of Zingiber zerumbet. Pak. J. Pharm. Sci. 2010, 23, 75–82. [Google Scholar] [PubMed]
- Dash, S.; Ray, M.; Mishra, A.; Shahbazi, S.; Gopinath Achary, A.; Nayak, S.; Singh, S. Zerumbone, a natural plant dietary compound induces expression of interleukin-12p70 cytokine in human peripheral blood mononuclear cells. Asian J. Pharm. Clin. Res. 2016, 9, 312–315. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, O.A.A.; Ye, L.J.; Kamarudin, M.N.A.; Hazni, H.; Paydar, M.; Looi, C.Y.; Shilpi, J.A.; Kadir, H.A.; Awang, K. Neuroprotective and antioxidant constituents from Curcuma zedoaria Rhizomes. Rec. Nat. Prod. 2015, 9, 349–355. [Google Scholar]
- Gopalsamy, B.; Farouk, A.A.O.; Tengku Mohamad, T.A.S.; Sulaiman, M.R.; Perimal, E.K. Antiallodynic and antihyperalgesic activities of zerumbone via the suppression of IL-1β, IL-6, and TNF-α in a mouse model of neuropathic pain. J. Pain Res. 2017, 10, 2605–2619. [Google Scholar] [CrossRef] [Green Version]
- Jantan, I.; Raweh, S.M.; Sirat, H.M.; Jamil, S.; Mohd Yasin, Y.H.; Jalil, J.; Jamal, J.A. Inhibitory effect of compounds from Zingiberaceae species on human platelet aggregation. Phytomedicine 2008, 15, 306–309. [Google Scholar] [CrossRef]
- Oh, T.I.; Jung, H.J.; Lee, Y.M.; Lee, S.; Kim, G.H.; Kan, S.Y.; Kang, H.; Oh, T.; Ko, H.M.; Kwak, K.C.; et al. Zerumbone, a tropical ginger sesquiterpene of Zingiber officinale Roscoe, attenuates α-MSH-induced melanogenesis in B16F10 cells. Int. J. Mol. Sci. 2018, 19, 3149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.W.; Yang, D.; Jeong, H.; Park, I.S.; Lee, M.H.; Lim, C.W.; Kim, B. Dietary zerumbone, a sesquiterpene, ameliorates hepatotoxin-mediated acute and chronic liver injury in mice. Phyther. Res. 2019, 33, 1538–1550. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Niu, J.; Ou, L.; Deng, B.; Wang, Y.; Li, S. Zerumbone protects against carbon tetrachloride (CCl4)-induced acute liver injury in mice via inhibiting oxidative stress and the inflammatory response: Involving the TLR4/NF-κB/COX-2 pathway. Molecules 2019, 24, 1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamid, A.; Lee, L.S.; Karim, S.R.; Jufri, N.F. Hepatoprotective effects of zerumbone against paracetamol-induced acute hepatotoxicity in rats. Malays. J. Med. Sci. MJMS 2018, 25, 64. [Google Scholar] [CrossRef] [PubMed]
- Ghazalee, N.S.; Jantan, I.; Arshad, L.; Haque, M.A. Immunosuppressive effects of the standardized extract of Zingiber zerumbet on innate immune responses in Wistar rats. Phyther. Res. 2019, 33, 929–938. [Google Scholar] [CrossRef]
- Akhtar, N.M.Y.; Jantan, I.; Arshad, L.; Haque, M.A. Standardized ethanol extract, essential oil and zerumbone of Zingiber zerumbet rhizome suppress phagocytic activity of human neutrophils. BMC Complement. Altern. Med. 2019, 19, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shieh, Y.H.; Huang, H.M.; Wang, C.C.; Lee, C.C.; Fan, C.K.; Lee, Y.L. Zerumbone enhances the Th1 response and ameliorates ovalbumin-induced Th2 responses and airway inflammation in mice. Int. Immunopharmacol. 2015, 24, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Albaayit, S.F.A.; Maharjan, R.; Liao, J.W.; Rajendran, P.; Wu, J.J.; Hseu, Y.C. Immunomodulation of Zerumbone via Decreasing the Production of Reactive Oxygen Species from Immune Cells. Science 2018, 21, 475–479. [Google Scholar]
- Hemn, H.O. Influence of Zerumbone Supplementation a Natural Dietary Product from Zingiber zerumbet smith on Early-Developed Atherosclerotic Lesions in Cholesterol-Fed Rabbits. Open Conf. Proc. J. 2014, 4, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, T.F.; Lu, H.J.; Liou, S.S.; Chang, C.J.; Liu, I.M. Lipid-lowering effects of zerumbone, a natural cyclic sesquiterpene of Zingiber zerumbet Smith, in high-fat diet-induced hyperlipidemic hamsters. Food Chem. Toxicol. 2014, 69, 132–139. [Google Scholar] [CrossRef]
- Ahn, J.; Lee, H.; Jung, C.H.; Choi, W.H.; Ha, T.Y. Zerumbone ameliorates high-fat diet-induced adiposity by restoring AMPK-regulated lipogenesis and microRNA-146b/SIRT1-mediated adipogenesis. Oncotarget 2017, 8, 36984. [Google Scholar] [CrossRef] [Green Version]
- Beattie, J.H.; Nicol, F.; Gordon, M.-J.; Reid, M.D.; Cantlay, L.; Horgan, G.W.; Kwun, I.-S.; Ahn, J.-Y.; Ha, T.-Y. Ginger phytochemicals mitigate the obesogenic effects of a high-fat diet in mice: A proteomic and biomarker network analysis. Mol. Nutr. Food Res. 2011, 55, S203–S213. [Google Scholar] [CrossRef]
- Shrikanth, C.B.; Chilkunda, N.D. Zerumbone Ameliorates High Glucose-Induced Reduction in AMP-Activated Protein Kinase Phosphorylation in Tubular Kidney Cells. J. Agric. Food Chem. 2017, 65, 9208–9216. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, T.-F.; Liou, S.-S.; Chang, C.J.; Liu, I.-M. Zerumbone, a tropical ginger sesquiterpene, ameliorates streptozotocin-induced diabetic nephropathy in rats by reducing the hyperglycemia-induced inflammatory response. Nutr. Metab. 2013, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, T.-F.; Liou, S.-S.; Tzeng, Y.-C.; Liu, I.-M. Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats. Nutritiens 2016, 8, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Zou, S.; Cui, Z.; Guo, P.; Meng, Q.; Shi, X.; Gao, Y.; Yang, G.; Han, Z. Zerumbone protects INS-1 rat pancreatic beta cells from high glucose-induced apoptosis through generation of reactive oxygen species. Biochem. Biophys. Res. Commun. 2015, 460, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Y.; Tzeng, T.-F.; Liu, I.-M. Healing potential of zerumbone ointment on experimental full-thickness excision cutaneous wounds in rat. J. Tissue Viability 2017, 26, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.E.M.; Abdul, A.B.; Suliman, F.E.O.; Sukari, M.A.; Rasedee, A.; Fatah, S.S. Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 2011, 83, 1707–1714. [Google Scholar] [CrossRef]
Extraction Solvent | Compounds | References |
---|---|---|
Hexane extract | (E)-4-(3,4-dimethoxyphenyl)-but-3-en-1-ol (E)-4-(3,4-Dimethoxyphenyl)-but-3-en-1-yl acetate (E)-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene | [40] |
Hexane extract | 4-(3′,4′-Dimethoxyphenyl)but-3-ene 4-(3′,4′-Dimethoxyphenyl)but-1,3-diene 4-(2′,4′,5′-Trimethoxyphenyl)but-3-ene 4-(2′,4′,5′-Trimethoxyphenyl)but-1,3-diene (E)-4-(3′,4′-Dimethoxy)but-3-en-1-yl palmitate (E)-4-(3′,4′-Dimethoxyphenyl)but-3-en-l-y1 palmitate 3,4-Dimethoxybenzaldehyde 2,4,5-trimethoxybenzaldehyde | [41] |
Chloroform extract | cis-3-(2′,4′,5′-Trimethoxyphenyl)-4-[(E)-2‴,4‴,5‴-trimethoxystyryl] cyclohex-1-ene cis-3-(3′,4′-Dimethoxyphenyl)-4-[(E)-3‴,4‴-dimethoxystyryl]cyclohex-l-ene cis-3-(3′,4′-Dimethoxyphenyl)-4-[(E)-2‴,4‴,5‴-trimethoxystyryl]cyclohex-1-ene cis-3-(2′,4′,5′-Trimethoxyphenyl)-4-[(E)-3‴,4‴-dimethoxystyryl]cyclohex-1-ene (E)-4-(3′,4′-Dimethoxypheny1)but-3-en-1-o1 (E)-4-(3′,4′-Dimethoxypheny1) but-3-en-1-yl acetate 8-(3′,4′-Dimethoxypheny1)-2-methoxynaphtho-1,4-quinone | [27,42] |
Chloroform extract | cis-4[(E)-3,4-Dimethoxylstyryl]-3-(2,4,5-trimethoxyphenyl)cyclohex-1-ene trans-3-(3,4-Dimethoxyphenyl)-4[(E)-3,4-dimethoxystyryl]-cyclohex-1-ene trans-3-(3,4-Dimethoxyphenyl)-4-[(E)-2,4,5-trimenthoxystyryl] cyclohex-1-ene (E)-4-(3,4-Dimethoxyphenyl) but-3-en-1-yl palmitate (E)-1-(3,4-Dimethoxyphenyl) but-1-ene (E)-1-(3,4-Dimethoxyphenyl) butadiene 2-Methoxy-8(2,4,5-trimethoxyphenyl)-naphtho-1,4-quionone Curcumin Vanillic acid Vanillin Veratric acid Terpinen-4-ol | [42] |
Toluene extract | Cassumunaquinone 1 Cassumunaquinone 2 Alflabene Cassumunene 2-(3,4-Dimethoxystyryl) ethanol | [43,44] |
Methanol extract | (E)-1-(3,4-Dimethoxyphenyl)but-1-ene (E)-1-(3,4-Dimethoxyphenyl)butadiene Zerumbone | [45] |
Acetone extract | Cassumunin A Cassumunin B Cassumunin C | [46] |
Acetone extract | Cassumunarin A Cassumunarin B Cassumunarin C | [47] |
Acetone extract | (±)-trans-3-(2,4,5-Trimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]-cyclohexene (±)-cis-1,2-Bis[(E)-3,4-dimethoxystyryl]-cyclobutane (±)-cis-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]-cyclohexene (±)-trans-3(3,4-Dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]-cyclohexene | [48] |
Acetone extract | (E)-4-(4-Hydroxy-3-methoxyphenyl)but-3-en-1-yl acetate (E)-4-(4-Hydroxy-3-methoxyphenyl)but-2-en-1-ol (E)-2-Hydroxy-4-(3,4-dimethoxyphenyl)but-3-en-1-ol (E)-2-Methoxy-4-(3,4-dimethoxyphenyl)but-3-en-1-ol (E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-ol (E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-yl acetate (E)-3-Hydroxy-1-(3,4-dimethoxyphenyl)but-1-ene | [49] |
Hexane extract | (E)-4-(3′,4′ Dimethoxyphenyl)but-3-enyl acetate cis-3-(3′,4′-Dimethoxyphenyl)-4-[(E)-3,‴,4‴-dimethoxystyryl]cyclohex-l-ene cis-3-(3′,4′-Dimethoxyphenyl)-4-[(E)-2‴,4‴,5‴-trimethoxystyryl]cyclohex-1-ene cis-3-(2′,4′,5′-Trimethoxyphenyl)-4-[(E)-2‴,4‴,5‴-trimethoxystyryl]cyclohex-l-ene (E)-4-(3′-4′-dime-thoxyphenyl)but-3-en-l-ol | [50] |
Ethanol extract | (E)-4-(3′,4′-dimethoxyphenyl)but-3-enyl acetate (E)-4-(3′,4′-dimethoxyphenyl)but-1,3-diene | [51] |
Methanol extract | Phlain I Phlain II Phlain III Phlain IV Phlain V Phlain VI 3,4-Dimethoxybenzaldehyde 2,4,5-Trimethoxybenzaldehyde (E)-1-(3,4-Dimethoxyphenyl)buta-1,3-diene (E)-1-(2,4,5-Trimethoxyphenyl)buta-1,3-diene (E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-ol (E)-4-(3,4-Dimethoxyphenyl)but-3-enyl acetate (E)-1-(3,4-Dimethoxyphenyl)but-1-ene (E)-1-(2,4,5-Trimethoxyphenyl)but-1-ene (±)-cis-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex1-ene (±)-cis-3-(2,4,5-Trimethoxyphenyl)-4-[(E)-2,4,5-trimethoxystyryl]cyclohex-1-ene Cassumunaquinone 1 Cassumunaquinone 2 (-)-β-Sesquiphellandrene Curcumin Vanillic acid β-Sitosterol | [52] |
Methanol extract | Cassumunol A Cassumunol B Cassumunol C Cassumunol D Cassumunol E Cassumunol F Cassumunol G Cassumunol H | [53] |
Methanol extract | (±)-trans-3-(4′-Hydroxy-3′-methoxyphenyl)-4-[(E)-3‴,4‴-dimethoxystyryl]cyclohex-1-ene (±)-trans-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene 4-(3,4-Dimethoxyphenyl)but-1,3-diene 4-(2,4,5-Trimethoxyphenyl)but-1,3-diene | [54] |
Chloroform extract | (E)-4-(3,4-Dimethoxy-phenyl)but-3-en-1-O-β-d-glucopyranoside (±)-trans-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene (±)-trans-3-(4-Hydroxy-3-methoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene 4-(2,4,5-Trimethoxyphenyl)-but-1,3-diene, 4-(3,4-Dimethoxyphenyl)but-1,3-diene (E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-ol (E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-yl acetate | [55] |
Hexane extract | Zerumbone Zerumbol Buddledone A Furanodienone Germacrone Borneol Camphor | [20] |
Chloroform extract | (E)-8(17),12-labdadiene-15,16-dial Camphor | [20] |
Methanol extract | Zerumbone Kaempferol 3-O-methyl ether Kaempferol 3-O-α-rhamnopyranoside Kaempferol 3-O-α-(4″-O-acetyl)rhamnopyranoside Kaempferol 3-O-α-(3″-O-acetyl)rhamnopyranoside Kaempferol 3-O-α-(3″,4″-di-O-acetyl)rhamnopyranoside | [4] |
Experimental Models | Results and Possible Mechanisms | Reference |
---|---|---|
HeLa cells | ZER selectively inhibited the proliferation of HeLa cells and also enhanced the anti-proliferative activity of anticancer agents vinblastine and paclitaxel. | [92] |
HeLa cells | ZER stimulated the apoptosis. | [100] |
Non-small cell lung cancer (NSCLC) A549 cells | ZER showed suppression of OPN induced cell invasion through inhibition of FAK/AKT/ROCK pathway. | [101] |
NSCLC cells | ZER induceed mitochondrial apoptosis and enhanced the susceptibility to cisplatin. | [102] |
DU145 prostate cancer cells | ZER exerted anticancer effects against hormone refractory DU145 prostate cancer cells mediated through the inhibition of aberrant signaling axis of IL-6/JAK2/STAT3. | [103] |
Triple negative breast cancer (TNBC) cells | ZER supressed IL-1β induced cell invasion. | [104] |
HCT-116 and SW48 cells | ZER exerted antimetastatic effects through inhibition of FAk/PI3k/NF-κB-uPA signaling pathway. | [105] |
P-338D1 and HL-60 cells and Splenocytes from CDF1 mice | ZER inhibited the growth of P-338D1 and HL-60 cells and prolonged the life of P-338D1-bearing CDF1 mice. | [106] |
PANC-1 cells | ZER induced apoptosis through p53 signal pathway. | [107] |
Breast cancer (MCF-7) cells | Cytotoxicity of ZER against estrogen receptor positive breast cancer (MCF-7) cells was significantly increased through co administration with TP5-iRGD peptide. | [108] |
CEM-ss cells | ZER showed apoptotic activity on T-acute lymphoblastic leukemia. | [109] |
PC-3 and DU-145, two human hormonerefractory prostate cancer (HRPC) cell lines | ZER inhibited tubulin assembly and induced a crosstalk between ER stress and mitochondrial insult, leading to apoptosis and autophagy in HRPCs. | [110] |
HCT-116 and SW-48 cells | ZER reduces the risk of CRC progression by suppressing the β-catenin pathway via miR-200. | [111] |
Jurkat cells | ZER conjugated with salicylic acid and benzoic acid derivates inhibited the growth of human T-cell lymphoid Jurkat cells. | [94] |
Esophageal squamous cell carcinomas (ESCC) | ZER inhibited cell migration of human esophageal squamous cancer by suppressing Rac1 expression through promoting Rac1 ubiquitination and degradation. | [95] |
EC-109 cells | ZER inhibited the proliferation and induced apoptosis of esophageal cancer EC-109 cells by upregulating the mRNA expression of P53 and downregulating the mRNA expression of Bcl-2. | [112] |
Canine mammary gland tumor (CMT) adenocarcinoma primary cell line. | ZER loaded into nanostructured lipid carrier (NLC) exerted CMT cell death via regulation of Bcl-2 and Bax gene expressions and caspase activation. | [9] |
Colorectal cancer cells (SW480) | ZER activated caspase 3, caspase 8, and caspase 9 and resulted in cell cycle arrest at the G2/M phase | [97] |
Human colonic adenocarcinoma cell lines (LS174T, LS180, COLO205, and COLO320DM) | ZER inhibited the proliferation of LS174T, LS180, COLO205, and COLO320DM cell lines. | [113] |
SKBR3 breast cancer cells | ZER supressed EGF-induced phosphorylation of STAT3. | [114] |
HCC1806 cells | ZER suppressed TGF-β1-induced FN, MMP-2, and MMP-9 expression. | [115] |
HepG2 cells | ZER induced apoptosis in hepatoma HepG2 cells. | [98] |
HepG2 cells | ZER inhibited the proliferation, and invasion and migration of hepatoma cells. | [116] |
Laryngeal carcinoma cells (Hep-2) | ZER arrested Hep-2 proliferation at S and G2/M phases and induced cell death. | [117] |
BALB/c female mice | ZER controled the growth of tumor and metastasis via delayed progression of cancer cell cycle and apoptosis. | [96] |
Male ICR mice | ZER effectively suppressed mouse colon and lung carcinogenesis through multiple modulatory mechanisms of growth, apoptosis, inflammation and expression of NFκB and HO-1. | [118] |
Female Balb/c mice | ZER induced apoptosis in cervical tissues from female Balb/c mice treated prenatally with diethylstilboestrol. | [119] |
Caov-3 and HeLa cells | ZER inhibited cancer cell growth through the induction of apoptosis and arrested cell cycle at G2/M phase. | [120] |
Female BALB/c Mice | Combination of ZER and cisplatin modulated the serum level of interleukin 6 in mice with cervical intraepithelial neoplasia. | [121] |
HeLa cells | ZER caused prominent growth retardation of HeLa cells. | [122,123] |
HepG2 cells | ZER increased apoptosis in HepG2 cells by up-regulating pro-apoptotic Bax protein and suppressing anti-apoptotic Bcl-2 protein expression. | [124] |
MCF-7 and MDAMB-231cells | ZER inhibited the viability of MCF-7 and MDA-MB-231 cells | [125] |
HepG2 cells | Highly soluble inclusion complex of ZER-hydroxypropyl-β-cyclodextrin induced apoptosis of HepG2 via Caspase8/BH3 interacting-domain death agonist cleavage switch and modulating Bcl2/Bax ratio. | [12] |
HepG2, human umbilical vein endothelial cells (HUVECs) | ZER inhited prolieration and migration of HepG2 cells and inhibited angiogenesis, and expression of matrix metalloproteinase-9, vascular endothelial growth factor (VEGF) and VEGF receptor proteins in HUVECs cell line. | [126] |
MDA-MB-231, MCF-7, and MCF-10A cells | ZER induced G2/M phase cell cycle arrest and Bax/Bak mediated apoptosis in human breast cancer cells, and also retarded the growth of MDA-MB-231 xenografts in vivo. | [127] |
MCF-7 and MDA-MB-231 cells | ZER treatment resulted in increased Notch2 cleavage accompained by Persenlin-1 protein expression. | [88] |
Human PaCa cell lines BxPC-3 and MIA PaCa-2 | ZER blocked the PaCa-associated angiogenesis through the inhibition of NF-κB and NF-κB dependent proangiogenic gene products. | [128] |
Human renal cell carcinoma (RCC) cell line 786-O and Caki-1 | ZER acted as a novel blocker of STAT3 signaling cascade. | [129] |
Oral squamous cell carcinoma (OSCC) lines | ZER inhibited the activation of CXCR4-RhoA and PI3K-mTOR signaling pathways resulting into reduced cell viability of OSCC cells. | [130] |
Mouse epidermal cell line, JB6 Cl41 | ZER induced HO-1 expression mediated through activation of Nrf2 signaling. | [89] |
MDA-MB-231, MDA-MB-468, MDA-MB-361, T-47D, MCF-7 and MCF-10A cells | ZER inhibited the growth of breast cancer call line by downregulating CD1d overexpression. | [131] |
Murine leukemia induced with WEHI-3B cells | ZER-loaded nanostructured lipid carrier (ZER-NLC) induced mitochondrial-dependent apoptotic pathway in murine leukemia. | [132] |
Human gastric cancer cell line SGC-7901 | ZER induced human gastric cancer cells apoptosis. | [133] |
Human malignant melanoma (MM) A375 cell line | ZER induced apoptosis of A375 cells by activating Caspase-3. | [15] |
Human Rac1 were cloned from HEK293 T cells | ZER inhibits cell migration by suppressing Rac1 expression. | [95] |
Huh-7 and MHCC-LM3 cells and NSG mice | ZER prevented liver tumorigenesis through regulating cell metabolism and inducing cell cycle arrest and apoptosis. | [134] |
Human glioblastoma multiforme (GBM8401) cells | ZER induced apoptosis through inactivation of IKKα, followed by Akt and FOXO1 phosphorylation and caspase-3 activation. | [135] |
Human skin melanoma cell line CHL-1 | ZER showed chemotherapeutic effects on human melanoma cells by altering mitochondrial function. | [136] |
K562 cells | ZER treatment in K562 cells induced apoptosis through mitochondrial mediated pathway linked to upregulation of total histone H2AX, increased calcium and ROS production. | [137] |
In Vitro/In Vivo | Models | Activity | References |
---|---|---|---|
In vitro | Macrophages differentiated from human monocyte (THP-1) | ZER inhibited the secretion of pro-inflammatory cytokines in lipopolysaccharide (LPS)-activated inflammation in THP-1 cell-derived macrophages. | [138] |
In vivo | Mice (endotoxin-treated mice induce acute lung injury) | ZER reduced leukocytes infiltration into the alveolar space and inhibited lung edema in LPS-induced aculte lung injury. | [139] |
In vivo | Rats using Paw edema model | ZER reduced both λ-carrageenan- and prostaglandin E2-induced inflammation. | [140] |
In vitro | RAW264.7 murine macrophages | ZER induced proteo-stress leading to activition of HSF1 resulting into anti-inflammatory activity. | [141] |
In vivo | Wild-type C57BL/6 mice | ZER decreased ETBF-induced colitis through inhibition of NF-κB signaling pathway. | [142] |
In vitro | U937 monocytes | ZER supressed the activation of inflammatory markers in the macrophages via MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways. | [143] |
In vivo | Adult male pathogen-free ICR mice | ZER showed protective effect on acute lung injury induced by LPS via suppression of intracellular adhesion molecules-1, IL-1β, macrophage inflammatory protein -2, downregulation of Akt, p38 MAPK/JNK, and IκB/NF-κB pathways. | [144] |
In vivo | Adult male pathogen-free ICR mice | ZER showed protective effect on acute lung injury induced by LPS- via upregulation of antioxidative enzymes and Nrf2/HO-1 pathway. | [145] |
In vitro | RAW 264.7 cells | ZER inhibited proinflammatory gene inducible nitric oxide (iNOS) and COX2 expression by atteunating IkB degradation. | [146] |
In vitro | RAW264.7 cells | ZER significantly accelerated spontaneous COX-2 mRNA decay. | [147] |
In vitro | Murine macrophage RAW264.7 cells | ZER stimulated HO-1. | [148] |
In Vitro/In Vivo | Model Cells/Animals | Activity | References |
---|---|---|---|
Hepatoprotective activity | |||
In vitro | C57BL/6 mice | In a chronic liver injury model induced by CCl4, ZER treatment alleviated the hepatocellular toxicity and inhibitd activation of primary hepatic stellate cells. | [159] |
In vivo | Mice | ZER restored the activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. It also reduces the release of pro-inflammatory cytokines such as IL-6 and TNF-α, and inactivated the TLR4/NF-κB/COX-2 pathway in acute liver injury induced by CCl4 in mice. | [160] |
In vivo | Rats | ZER possessed protective activity against paracetamol-induced acute hepatotoxicity. | [161] |
Immunosuppressive and Immunomodulatory activities | |||
In vivo | Male wistar rats | ZER inhibited the migration of neutrophils, expressions of CD11b/CD18 integrin, phagocytic activity, and production of reactive oxygen species | [162] |
In vitro | CD18 integrin expression and phagocytic engulfment | ZER showed strong inhibition on the phagocytosis of neutrophils.Z | [163] |
In vitro | Asthmatic mouse model | ZER reduced ovalbumin (OVA)-specific immunoglobulin E (IgE) and induced IgG2a antibody production. It also reduced the production of eotaxin, keratinocyte-derived chemokine (KC), IL-4, IL-5, IL-10, and IL-13, and promoted Th1 cytokine interferon (IFN)-γ production. | [164] |
In vitro | Zymogen and PMA based chemiluminescence assay | ZER significantly inhibited intracellular and extracellular reactive oxygen species (ROS) production. | [165] |
Anti-hypercholesterolemic activity | |||
In vivo | Rabbit | ZER preventd the development of atherosclerotic lesions and supressed macrophage aggregation. | [166] |
Anti-hyperlipidemic activity | |||
In vivo | high-fat diet (HFD)-induced hyperlipidemic hamsters | ZER improved dyslipidemia by modulating lipolytic and lipogenic pathways of lipids metabolism | [167] |
Anti-obesity activity | |||
In vivo | C57BL/6N mice | ZER ameliorated diet-induced obesity and inhibited adipogenesis by restoring AMPK-regulated lipogenesis and the microRNA-146b/SIRT1-mediated adipogenesis. | [168] |
In vivo | C57BL/6 mice | ZER decreased the levels of plasma triglycerides well as plasma insulin and leptin. | [169] |
Anti-hyperglycemia and related activities | |||
In vitro | MDCK cells | ZER increased AMPK phosphorylation at Thr172 under normal/high glucose without affecting mitochondrial function. | [170] |
In vivo | STZ-diabetic rats | ZER ameliorated diabetic nephropathy by inhibiting hyperglycemia-induced inflammation. | [171] |
In vivo | STZ-diabetic rats | ZER protected from hyperglycemia-induced retinal damage. | [172] |
In vitro | INS-1 rat pancreatic β cells | ZER protected against high glucose-induced apoptosis of INS-1 pancreatic β cells. | [173] |
Wound healing activity | |||
In vivo | ZER treated wound sections showed greater tissue regeneration and more fibroblasts possibly through the inhanced expression of VEGF, TGF-β1 and collagen IV. | [174] | |
Antiallergic activity | |||
In vivo | Female BALB/c and C57BL/6 mice | ZER showed antiallergic effect via modulation of Th1/Th2 cytokines in an asthmatic mouse model | [164] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devkota, H.P.; Paudel, K.R.; Hassan, M.M.; Dirar, A.I.; Das, N.; Adhikari-Devkota, A.; Echeverría, J.; Logesh, R.; Jha, N.K.; Singh, S.K.; et al. Bioactive Compounds from Zingiber montanum and Their Pharmacological Activities with Focus on Zerumbone. Appl. Sci. 2021, 11, 10205. https://doi.org/10.3390/app112110205
Devkota HP, Paudel KR, Hassan MM, Dirar AI, Das N, Adhikari-Devkota A, Echeverría J, Logesh R, Jha NK, Singh SK, et al. Bioactive Compounds from Zingiber montanum and Their Pharmacological Activities with Focus on Zerumbone. Applied Sciences. 2021; 11(21):10205. https://doi.org/10.3390/app112110205
Chicago/Turabian StyleDevkota, Hari Prasad, Keshav Raj Paudel, Md. Mahadi Hassan, Amina Ibrahim Dirar, Niranjan Das, Anjana Adhikari-Devkota, Javier Echeverría, Rajan Logesh, Niraj Kumar Jha, Sachin Kumar Singh, and et al. 2021. "Bioactive Compounds from Zingiber montanum and Their Pharmacological Activities with Focus on Zerumbone" Applied Sciences 11, no. 21: 10205. https://doi.org/10.3390/app112110205
APA StyleDevkota, H. P., Paudel, K. R., Hassan, M. M., Dirar, A. I., Das, N., Adhikari-Devkota, A., Echeverría, J., Logesh, R., Jha, N. K., Singh, S. K., Hansbro, P. M., Chan, Y., Chellappan, D. K., & Dua, K. (2021). Bioactive Compounds from Zingiber montanum and Their Pharmacological Activities with Focus on Zerumbone. Applied Sciences, 11(21), 10205. https://doi.org/10.3390/app112110205