Actions and Therapeutic Potential of Madecassoside and Other Major Constituents of Centella asiatica: A Review
Abstract
:1. Introduction
2. Methodology
3. Active Constituents of C. asiatica
4. Pharmacokinetics of C. asiatica Constituents
5. Toxicity Profile of C. asiatica Constituents
6. Therapeutic Actions of Madecassoside and Other Major Compounds in C. asiatica
6.1. Skin Related Disease or Wound
6.2. Rheumatoid Arthritis
6.3. Neurodegenerative Diseases
6.4. Cardiovascular Diseases
6.5. Lung Diseases
6.6. Kidney Diseases
6.7. Liver Diseases
6.8. Anticancer Actions
6.9. Diabetes
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CA | Centella asiatica |
TLC | Thin layer chromatography |
TLC-MS | Thin layer chromatography-mass spectrometry |
UVS | Ultraviolet-visible spectroscopy |
HPLC | High performance liquid chromatography |
HPTLC | High performance thin layer chromatography |
HPLC-ESI-MS | HPLC-electrospray ionisation–mass spectrometry |
HPLC-UV | HPLC-ultraviolet |
HPLC-ELSD | HPLC-paired with evaporative light scattering detector |
HPAEC-PAD | High-performance anion-exchange chromatography combined with pulsed amperometric detection |
HPLC-PAD | HPLC- pulsed amperometric detection |
ELISA | Enzyme-linked immunosorbent assay |
cmax | Maximum plasma concentration |
BBB | Blood brain barrier |
t1/2 | Half-life |
AUC0–24 | Area under plasma concentration-time curve from 0–24 h |
LD50 | Median lethal dose |
Vd/f | Apparent volume of distribution |
Ke | Elimination rate constant |
CIA | Collagen-induced arthritis |
HUVEC | Human umbilical vein endothelial cell |
MAPK | Mitogen activated protein kinases |
VEGF | Vascular endothelial growth factor |
MCP-1 | Monocyte chemoattractant protein-1 |
UV | Ultraviolet |
UVA | Ultraviolet A |
UVB | Ultraviolet B |
PAR-2 | Protease activator receptor 2 |
COX-2 | Cyclooxygenase 2 |
PGE2 | Prostaglandin E2 |
PGF2α | Prostaglandin F2 alpha |
IMQ | Imiquimod |
IL | Interleukin |
TGFβ | Tranforming growth factor beta |
TβRI | TGF β receptor type I |
TβRII | TGF β receptor type II |
MITF | Micropthalmia-associated transcription factor |
DNA | Deoxyribonucleic acid |
AGE | Advanced glycation end-products |
ROS | Reactive oxygen species |
MMP-2 | Matrix metalloproteinase-2 |
KF | Keloid fibroblasts |
Bcl-2 | B-cell lymphoma 2 |
PI3K | Phosphatidylinositol-3-kinase |
AKT | Protein kinase B |
GDF-9 | Growth differentiation factor-9 |
PAI-1 | Plasminogen activator inhibitor-1 |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
RA | Rheumatoid arthritis |
CII | Collagen II |
TNF-α | Tumor necrosis factor alpha |
FLS | Fibroblast-like synoviocytes |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
AD | Alzheimer’s disease |
PD | Parkinson disease |
Aβ | Amyloid β |
BDNF | Brain-derived neurotrophic factor |
PSD | Postsynaptic density protein |
ERK | Extracellular signal-regulated kinases |
LC 3-I | Light chain 3-I |
LC 3-II | Light chain 3-II |
TLR4 | Toll-like receptor 4 |
MyD88 | Myeloid differentiation primary response 88 |
TRAF6 | TNF receptor associated factor 6 |
hBMEC | Human brain microvascular endothelial cells |
SAMP8 | Senescence accelerated Mouse-Prone 8 |
ACh | Acetylcholine |
AChE | Acetylcholine esterase |
AlCl3 | Aluminium chloride |
NADPH | Nicotinamide adenine dinucleotide phosphate |
RAGE | Receptor for advanced glycation end products |
MPTP | 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
MDA | Malondialdehyde |
GSH | Glutathione |
CREB | cAMP response element-binding protein |
I/R | Ischemia-reperfusion |
NO | Nitrogen oxide |
OGD/R | Oxygen-glucose deprivation/reperfusion |
iNOS | Inducible nitric oxide synthase |
LPS | Lipopolysaccharide |
STAT | Signal transducer and activator of transcription |
QA | Quinolinic acid |
MI | Myocardial infarction |
CK | Creatine kinase |
LDH | Lactate dehydrogenase |
SOD | Superoxide dismutase |
CRP | C-reactive protein |
GSK-3β | Glycogen synthase kinase 3 beta |
HIF-1α | Hypoxia-inducible Factor 1-alpha |
HIF3A | Hypoxia-inducible Factor 3-alpha |
AMPK | 5’ adenosine monophosphate-activated protein kinase |
L-NAME | N(gamma)-nitro-L-arginine methyl ester |
eNOS | Endothelial nitric oxide synthase |
MS | Metabolic syndrome |
HCHF | High carbohydrate high fat |
CAD | Coronary artery disease |
PF | Pulmonary fibrosis |
BLM | Bleomycin |
HGF | Hepatocyte growth factor |
ALI | Acute lung injury |
COPD | Chronic obstructive pulmonary disease |
HO-1 | Heme oxygenase-1 |
DOX | Doxorubicin |
HK-2 | Human proximal tubule cells |
BUN | Blood urea nitrogen |
ECM | Extracellular matrix |
ALF | Acute liver failure |
D-GaIN | D-galactosamine |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
LTC4S | Leukotriene C4 synthase |
CCl4 | Carbon tetrachloride |
mTOR | Mammalian target of rapamycin |
IκBα | Inhibitor of nuclear factor kappa B |
CD14 | Cluster of differentiation 14 |
A/R | Anoxia/reoxygenation |
Nrf2 | Nuclear transcription factor |
HCC | Hepatocellular carcinoma |
PKC | Protein kinase C |
DM | Diabetes mellitus |
STZ | Streptozotocin |
References
- Nurlaily, A.; Noor, B.A.R.; Musalmah, M. Comparative Antioxidant and Anti-inflammatory Activity of Different Extracts of Centella asiatica (L.) Urban and Its Active Compounds, Asiaticoside and Madecassoside. Med. Health 2012, 7, 62–72. [Google Scholar]
- Aziz, Z.A.; Davey, M.R.; Power, J.B.; Anthony, P.; Smith, R.M.; Lowe, K.C. Production of asiaticoside and madecassoside in Centella asiatica in vitro and in vivo. Biol. Plant. 2007, 51, 34–42. [Google Scholar] [CrossRef]
- Chandrika, U.G.; Kumara, P.A.P. Gotu Kola (Centella asiatica): Nutritional properties and plausible health benefits. Adv. Food Nutr. Res. 2015, 76, 125–157. [Google Scholar]
- Tassanawat, P.; Putalun, W.; Yusakul, G.; Sritularak, B.; Juengwatanatrakul, T.; Tanaka, H. Production of polyclonal antibody against madecassoside and development of immunoassay methods for analysis of triterpene glycosides in Centella asiatica. Phytochem. Anal. 2013, 24, 256–262. [Google Scholar] [CrossRef]
- Kwon, H.; Park, J.; Kim, G.; Park, Y. Determination of madecassoside and asiaticoside contents of C. asiatica leaf and C. asiatica-containing ointment and dentifrice by HPLC-coupled pulsed amperometric detection. Microchem. J. 2010, 98, 115–120. [Google Scholar] [CrossRef]
- Han, W.J.; Xia, Y.F.; Dai, Y. Development and validation of high-performance liquid chromatography/electrospray ionization mass spectrometry for assay of madecassoside in rat plasma and its application to pharmacokinetic study. Biomed. Chromatogr. 2012, 26, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.T.; Kurup, R.; Johnson, A.J.; Chandrika, S.P.; Mathew, P.J.; Dan, M.; Baby, S. Elite genotypes/chemotypes, with high contents of madecassoside and asiaticoside, from sixty accessions of Centella asiatica of south India and the Andaman Islands: For cultivation and utility in cosmetic and herbal drug applications. Ind. Crop. Prod. 2010, 32, 545–550. [Google Scholar] [CrossRef]
- Jia, G.; Lu, X. Enrichment and purification of madecassoside and asiaticoside from Centella asiatica extracts with macroporous resins. J. Chromatogr. A 2008, 1193, 136–141. [Google Scholar] [CrossRef]
- Kai, G.; Pan, J.; Yuan, C.; Yuan, Y. Separation of Madecassoside and Madecassic Acid Isomers by High Performance Liquid Chromatography Using β-Cyclodextrin as Mobile Phase Additive. Bull. Korean Chem. Soc. 2008, 29, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Hengjumrut, P.; Anukunwithaya, T.; Tantisira, M.H.; Tantisira, B.; Khemawoot, P. Comparative pharmacokinetics between madecassoside and asiaticoside presented in a standardised extract of Centella asiatica, ECa 233 and their respective pure compound given separately in rats. Xenobiotica 2018, 48, 18–27. [Google Scholar] [CrossRef]
- Khemawoot, P.; Hengjumrut, P.; Anukunwithaya, T.; Chang, L.C.; Wongwiwatthananukit, S.; Tantisira, M.H. Comparison of the Pharmacokinetic Profiles of a Standardized Extract of Centella asiatica and A Mixture of Madecassoside and Asiaticoside in Rats. PMIO 2018, 5, e39–e47. [Google Scholar] [CrossRef]
- Jana, U.; Sur, T.K.; Maity, L.N.; Debnath, P.K.; Bhattacharyya, D. A clinical study on the management of generalized anxiety disorder with Centella asiatica. Nepal Med. Coll. J. 2010, 12, 8–11. [Google Scholar] [PubMed]
- Bradwejn, J.; Zhou, Y.; Koszycki, D.; Shlik, J. A double-blind, placebo-controlled study on the effects of Gotu Kola (Centella asiatica) on acoustic startle response in healthy subjects. J. Clin. Psychopharmacol. 2000, 20, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Rao-Appa, M.; Srinivasan, K.; Rao, K. Effect of mandookaparni (Centella asiatica) on the mentally retarded children. J. Res. Indian Med. 1973, 8, 9. [Google Scholar]
- Wattanathorn, J.; Mator, L.; Muchimapura, S.; Tongun, T.; Pasuriwong, O.; Piyawatkul, N.; Yimtae, K.; Sripanidkulchai, B.; Singkhoraard, J. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J. Ethnopharmacol. 2008, 116, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Singh, S.; Patwardhan, K.; Gehlot, S.; Gambhir, I. Effect of Centella asiatica on mild cognitive impairment (MCI) and other common age-related clinical problems. Dig. J. Nanomater. Biostruct. 2008, 3, 215–220. [Google Scholar]
- Incandela, L.; Belcaro, G.; Nicolaides, A.; Cesarone, M.; De Sanctis, M.; Corsi, M.; Bavera, P.; Ippolito, E.; Griffin, M.; Geroulakos, G. Modification of the Echogenicity of Femoral Plaques after Treatment with Total Triterpenic Fraction of Centella aslatica: A Prospective, Randomized, Placebo-Controlled Trial. Angiology 2001, 52, S69–S73. [Google Scholar] [CrossRef]
- Cesarone, M.; Belcaro, G.; Rulo, A.; Griffin, M.; Ricci, A.; Ippolito, E.; De Sanctis, M.; Incandela, L.; Bavera, P.; Cacchio, M. Microcirculatory effects of total triterpenic fraction of Centella asiatica in chronic venous hypertension: Measurement by laser Doppler, TcPO2-CO2, and leg volumetry. Angiology 2001, 52, S45–S48. [Google Scholar] [CrossRef]
- Cesarone, M.; Belcaro, G.; De Sanctis, M.; Incandela, L.; Cacchio, M.; Bavera, P.; Ippolito, E.; Bucci, M.; Griffin, M.; Geroulakos, G. Effects of the total triterpenic fraction of Centella asiatica in venous hypertensive microangiopathy: A prospective, placebo-controlled, randomized trial. Angiology 2001, 52, S15–S18. [Google Scholar] [CrossRef]
- Belcaro, G.V.; Grimaldi, R.; Guidi, G. Improvement of capillary permeability in patients with venous hypertension after treatment with TTFCA. Angiology 1990, 41, 533–540. [Google Scholar] [CrossRef]
- Cesarone, M.; Incandela, L.; De Sanctis, M.; Belcaro, G.; Bavera, P.; Bucci, M.; Ippolito, E. Evaluation of treatment of diabetic microangiopathy with total triterpenic fraction of Centella asiatica: A clinical prospective randomized trial with a microcirculatory model. Angiology 2001, 52, S49–S54. [Google Scholar] [CrossRef]
- Incandela, L.; Belcaro, G.; Cesarone, M.; De Sanctis, M.; Nargi, E.; Patricelli, P.; Bucci, M. Treatment of diabetic microangiopathy and edema with total triterpenic fraction of Centella asiatica: A prospective, placebo-controlled randomized study. Angiology 2001, 52, S27–S31. [Google Scholar] [CrossRef]
- Cesarone, M.R.; Laurora, G.; De Sanctis, M.T.; Incandela, L.; Grimaldi, R.; Marelli, C.; Belcaro, G. The microcirculatory activity of Centella asiatica in venous insufficiency. A double-blind study. Minerva Cardioangiol. 1994, 42, 299–304. [Google Scholar]
- Pointel, J.; Boccalon, H.; Cloarec, M.; Ledevehat, C.; Joubert, M. Titrated extract of Centella asiatica (TECA) in the treatment of venous insufficiency of the lower limbs. Angiology 1987, 38, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, S.; Ghosh, S.; Chakraborty, T.; Kundu, S.; Hazra, S. Use of a common Indian herb “mandukaparni” in the treatment of leprosy. J. Indian Med. Assoc. 1978, 70, 177–180. [Google Scholar] [PubMed]
- Darnis, F.; Orcel, L.; De Saint-Maur, P.P.; Mamou, P. Use of a titrated extract of Centella asiatica in chronic hepatic disorders (author’s transl). Sem. Hop. 1979, 55, 1749–1750. [Google Scholar] [PubMed]
- Rhee, J.; Choi, K. Clinical effect of the titrated extract of Centella asiatica (madecassol) on peptic ulcer. Korean J. Gastroenterol. 1981, 13, 35–40. [Google Scholar]
- Cho, K. Clinical experiences of madecassol (Centella asiatica) in the treatment of peptic ulcer. Korean J. Gastroenterol. 1981, 13, 49–56. [Google Scholar]
- Shin, H.; Choi, I.; Lee, M.; Park, K. Clinical trials of madecassol (Centella asiatica) on gastrointestinal ulcer patients. Korean J. Gastroenterol. 1982, 14, 49–56. [Google Scholar]
- Wu, F.; Bian, D.; Xia, Y.; Gong, Z.; Tan, Q.; Chen, J.; Dai, Y. Identification of Major Active Ingredients Responsible for Burn Wound Healing of Centella asiatica Herbs. Evid. Based. Complement. Altern. Med. 2012, 2012, 848093. [Google Scholar] [CrossRef] [Green Version]
- Plengmuankhae, W.; Tantitadapitak, C. Low temperature and water dehydration increase the levels of asiaticoside and madecassoside in Centella asiatica (L.) Urban. S. Afr. J. Bot. 2015, 97, 196–203. [Google Scholar] [CrossRef]
- Xing, H.; Su, B.; Wang, Y.; Yang, Y.; Ren, Q.; Xiao, W.; Lu, X. Separation and Determination of Asiaticoside, Asiaticoside-B and Madecassoside in Centella asiatica Total Triterpenoid Saponins by HPLC. J. Liq. Chromatogr. Rel. Technol. 2009, 32, 1891–1900. [Google Scholar] [CrossRef]
- Gupta, A.; Verma, S.; Kushwaha, P.; Srivastava, S.; Aks, R. Quantitave Estimation of Asiatic acid, Asiaticoside & Madecassoside in two accessions of Centella asiatica (L) Urban for Morpho-chemotypic variation. Pharm. Res. 2014, 48, 75–79. [Google Scholar]
- Pan, J.; Kai, G.; Yuan, C.; Jin, R. Separation and Determination of the Structural Isomers of Madecassoside by HPLC Using Î2-Cyclodextrin as Mobile Phase Additive. Chromatographia 2007, 66, 121–123. [Google Scholar] [CrossRef]
- Leng, D.D.; Han, W.J.; Rui, Y.; Dai, Y.; Xia, Y.F. In vivo disposition and metabolism of madecassoside, a major bioactive constituent in Centella asiatica (L.) Urb. J. Ethnopharmacol. 2013, 150, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Bonfill, M.; Mangas, S.; Cusido, R.M.; Osuna, L.; Pinol, M.T.; Palazon, J. Identification of triterpenoid compounds of Centella asiatica by thin-layer chromatography and mass spectrometry. Biomed. Chromatogr. 2006, 20, 151–153. [Google Scholar] [CrossRef]
- Diallo, B.; Vanhaelen-Fastré, R.; Vanhaelen, M. Direct coupling of high-speed counter-current chromatography to thin-layer chromatography: Application to the separation of asiaticoside and madecassoside from Centella asiatica. J. Chromatogr. A 1991, 558, 446–450. [Google Scholar] [CrossRef]
- Du, Q.; Jerz, G.; Chen, P.; Winterhalter, P. Preparation of Ursane Triterpenoids from Centella asiatica Using High Speed Countercurrent Chromatography with Step-Gradient Elution. J. Liq. Chromatogr. Rel. Technol. 2004, 27, 2201–2215. [Google Scholar] [CrossRef]
- Rai, P.; Mishra, S. Development of a simple and sensitive spectrophotometric method for the simultaneous determination of asiaticoside and wedelolactone in a polyherbal formulation. Pharmacogn. Mag. 2007, 3, 47–51. [Google Scholar]
- Randriamampionona, D.; Diallo, B.; Rakotoniriana, F.; Rabemanantsoa, C.; Cheuk, K.; Corbisier, A.; Mahillon, J.; Ratsimamanga, S.; El Jaziri, M. Comparative analysis of active constituents in Centella asiatica samples from Madagascar: Application for ex situ conservation and clonal propagation. Fitoterapia 2007, 78, 482–489. [Google Scholar] [CrossRef]
- Rafamantanana, M.H.; Rozet, E.; Raoelison, G.E.; Cheuk, K.; Ratsimamanga, S.U.; Hubert, P.; Quetin-Leclercq, J. An improved HPLC-UV method for the simultaneous quantification of triterpenic glycosides and aglycones in leaves of Centella asiatica (L.) Urb (APIACEAE). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 2396–2402. [Google Scholar] [CrossRef]
- Zhang, F.L.; Wei, Y.J.; Zhu, J.; Gong, Z.N. Simultaneous quantitation of three major triterpenoid glycosides in Centella asiatica extracts by high performance liquid chromatography with evaporative light scattering detection. Biomed. Chromatogr. 2008, 22, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.P.; Gupta, M.M.; Kumar, S. HPTLC of asiaticoside in Centella asiatica. J. Indian Chem. Soc. 1999, 76, 321–322. [Google Scholar]
- Singh, B.; Tyagi, A.; De, J.; Agrawal, S. HPTLC determination of asiaticoside in Centella asiatica (Linn.). Indian Drugs 2005, 42, 87–89. [Google Scholar]
- Benny, M.; Antony, B. Estimation of asiaticoside by HPTLC. Indian J. Nat. Prod. 2005, 21, 22–23. [Google Scholar]
- Zhang, L.L.; Wang, H.S.; Yao, Q.Q.; Luan, Y.; Wang, X.L. Determination of asiaticoside and madecassoside in Centella asiatica (L.) Urb. by RP-HPLC. Chin. Tradit. Herb. Drugs 2007, 38, 455–456. [Google Scholar]
- Meeran, N.; Fizur, M.; Goyal, S.N.; Suchal, K.; Sharma, C.; Patil, C.R.; Ojha, S.K. Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: A pentacyclic triterpenoid of therapeutic promise. Front. Pharmacol. 2018, 9, 892. [Google Scholar] [CrossRef]
- Chassaud, L.F.; Fry, B.J.; Hawkins, D.R.; Lewis, J.D.; Sword, I.P.; Taylor, T.; Hathway, D.E. The metabolism of asiatic acid,-madecassic acid and asiaticoside in the rat. Arzneimittelforschung 1971, 21, 1379–1384. [Google Scholar]
- Zheng, X.; Wang, S. Determination of asiatic acid in beagle dog plasma after oral administration of Centella asiatica extract by precolumn derivatization RP-HPLC. J. Chromatogr. B 2009, 877, 477–481. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, H.; Sun, F.; Sun, S.; Zhu, Z.; Chai, Y. Biopharmaceutical and pharmacokinetic characterization of asiatic acid in Centella asiatica as determined by a sensitive and robust HPLC–MS method. J. Ethnopharmacol. 2015, 163, 31–38. [Google Scholar] [CrossRef]
- Lee, K.Y.; Bae, O.; Serfozo, K.; Hejabian, S.; Moussa, A.; Reeves, M.; Rumbeiha, W.; Fitzgerald, S.D.; Stein, G.; Baek, S. Asiatic acid attenuates infarct volume, mitochondrial dysfunction, and matrix metalloproteinase-9 induction after focal cerebral ischemia. Stroke 2012, 43, 1632–1638. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Bae, O.; Weinstock, S.; Kassab, M.; Majid, A. Neuroprotective effect of asiatic acid in rat model of focal embolic stroke. Biol. Pharm. Bull. 2014, 37, 1397–1401. [Google Scholar] [CrossRef] [Green Version]
- Chao, P.; Yin, M.; Mong, M. Anti-apoptotic and anti-glycative effects of asiatic acid in the brain of D-galactose treated mice. Food Funct. 2015, 6, 542–548. [Google Scholar] [CrossRef]
- Chao, P.; Lee, H.; Yin, M. Asiatic acid attenuated apoptotic and inflammatory stress in the striatum of MPTP-treated mice. Food Funct. 2016, 7, 1999–2005. [Google Scholar] [CrossRef]
- Grimaldi, R.; De Ponti, F.; D’angelo, L.; Caravaggi, M.; Guidi, G.; Lecchini, S.; Frigo, G.; Crema, A. Pharmacokinetics of the total triterpenic fraction of Centella asiatica after single and multiple administrations to healthy volunteers. A new assay for asiatic acid. J. Ethnopharmacol. 1990, 28, 235–241. [Google Scholar] [CrossRef]
- Rush, W.; Murray, G.; Graham, D. The comparative steady-state bioavailability of the active ingredients of Madecassol. Eur. J. Drug Metab. Pharmacokinet. 1993, 18, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.N.; Menon, S.; Shailajan, S. A liquid chromatography/electrospray ionization tandem mass spectrometric method for quantification of asiatic acid from plasma: Application to pharmacokinetic study in rats. Rapid Commun. Mass Spectrom. 2012, 26, 1899–1908. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Leng, D.; Gao, F.; Jiang, C.; Xia, Y.; Dai, Y. A LC-ESI-MS method for the simultaneous determination of madecassoside and its metabolite madecassic acid in rat plasma: Comparison pharmacokinetics in normal and collagen-induced arthritic rats. Chin. J. Nat. Med. 2014, 12, 943–951. [Google Scholar] [CrossRef]
- Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian. J. Pharm. Sci. 2010, 72, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Eun, H.C.; Lee, A.Y. Contact dermatitis due to madecassol. Contact Dermat. 1985, 13, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Izu, R.; Aguirre, A.; Gil, N.; Diaz-Perez, J. Allergic contact dermatitis from a cream containing Centella asiatica extract. Contact Dermat. 1992, 26, 192–213. [Google Scholar] [CrossRef]
- Hausen, B. Centella asiatica (Indian pennywort), an effective therapeutic but a weak sensitizer. Contact Dermat. 1993, 29, 175–179. [Google Scholar] [CrossRef]
- Danese, P.; Carnevali, C.; Bertazzoni, M.G. Allergic contact dermatitis due to Centella asiatica extract. Contact Dermat. 1994, 31, 201. [Google Scholar] [CrossRef]
- Bilbao, I.; Aguirre, A.; Zabala, R.; Gonzalez, R.; Raton, J.; Diaz Perez, J. Allergic contact dermatitis from butoxyethyl nicotinic acid and Centella asiatica extract. Contact Dermat. 1995, 33, 435–436. [Google Scholar] [CrossRef]
- Gonzalo Garijo, M.A.; Revenga Arranz, F.; Bobadilla Gonzalez, P. Allergic contact dermatitis due to Centella asiatica: A new case. Allergol. Immunopathol. 1996, 24, 132–134. [Google Scholar]
- Chivapat, S.; Chavalittumrong, P.; Tantisira, M.H. Acute and sub-chronic toxicity studies of a standardized extract of Centella asiatica ECa 233. Thai J. Pharm. Sci. 2011, 35, 55–64. [Google Scholar]
- Chivapat, S.; Chavalittumrong, P.; Attawish, A.; Boonruad, T.; Bansiddhi, J.; Phadungpat, S.; Punyamong, S.; Mingmuang, J. Toxicity study of Centella asiatica (L) urban. J. Thai Tradit. Altern. Med. 2004, 2, 3–17. [Google Scholar]
- Oruganti, M.; Roy, B.K.; Singh, K.K.; Prasad, R.; Kumar, S. Safety Assemment of Centella asiatica in albino rats. Pharmacogn. J. 2010, 2, 5–13. [Google Scholar] [CrossRef]
- Jorge, O.; Jorge, A. Hepatotoxicity associated with the ingestion of Centella asiatica. Rev. Española Enferm. Dig. 2005, 97, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Dutta, T.; Basu, U. Crude extract of Centella asiatica and products derived from its glycosides as oral antifertility agents. Indian J. Exp. Biol. 1968, 6, 181–182. [Google Scholar]
- Kartnig, T. Clinical applications of Centella asiatica (L.). Urb. Herbs Spices Med. Plants: Recent Adv. Bot. Hortic. Pharmacol. 1988, 3, 145–173. [Google Scholar]
- Laerum, O.D.; Iversen, O.H. Reticuloses and epidermal tumors in hairless mice after topical skin applications of cantharidin and asiaticoside. Cancer Res. 1972, 32, 1463–1469. [Google Scholar] [PubMed]
- Pan, Y.; Abd-Rashid, B.A.; Ismail, Z.; Ismail, R.; Mak, J.W.; Pook, P.C.; Er, H.M.; Ong, C.E. In vitro modulatory effects on three major human cytochrome P450 enzymes by multiple active constituents and extracts of Centella asiatica. J. Ethnopharmacol. 2010, 130, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Li, M.; Lu, Y.; Liu, D.; Li, C. Burn wound healing properties of asiaticoside and madecassoside. Exp. Ther. Med. 2016, 12, 1269–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Wang, Y.; Wei, Z.; Wei, W.; Zhao, P.; Tong, B.; Xia, Y.; Dai, Y. Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARÎ3/AMPK/ACC1 pathway. Cell Death Dis. 2017, 8, e2723. [Google Scholar] [CrossRef] [PubMed]
- Haftek, M.; Mac-Mary, S.; Le Bitoux, M.A.; Creidi, P.; Seite, S.; Rougier, A.; Humbert, P. Clinical, biometric and structural evaluation of the long-term effects of a topical treatment with ascorbic acid and madecassoside in photoaged human skin. Exp. Dermatol. 2008, 17, 946–952. [Google Scholar] [CrossRef]
- Wang, H.; Liu, M.; Du, S. Optimization of madecassoside liposomes using response surface methodology and evaluation of its stability. Int. J. Pharm. 2014, 473, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Dai, Y.; Li, Y.; Luo, Y.; Huang, F.; Gong, Z.; Meng, Q. Madecassoside isolated from Centella asiatica herbs facilitates burn wound healing in mice. Planta Med. 2008, 74, 809–815. [Google Scholar] [CrossRef]
- Yuliati, L.; Mardliyati, E.; Bramono, K.; Freisleben, H.J. Asiaticoside induces cell proliferation and collagen synthesis in human dermal fibroblasts. Universa Med. 2015, 34, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Bian, D.; Liu, M.; Li, Y.; Xia, Y.; Gong, Z.; Dai, Y. Madecassoside, a triterpenoid saponin isolated from Centella asiatica herbs, protects endothelial cells against oxidative stress. J. Biochem. Mol. Toxicol. 2012, 26, 399–406. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Lee, M.H.; You, K.E.; Kwon, B.; Seo, H.J.; Park, J. Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model. Phytomedicine 2012, 19, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Rasik, A.; Jain, G.; Shankar, R.; Kulshrestha, D.; Dhawan, B. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J. Ethnopharmacol. 1999, 65, 1–11. [Google Scholar] [CrossRef]
- Kimura, Y.; Sumiyoshi, M.; Samukawa, K.; Satake, N.; Sakanaka, M. Facilitating action of asiaticoside at low doses on burn wound repair and its mechanism. Eur. J. Pharmacol. 2008, 584, 415–423. [Google Scholar] [CrossRef]
- Shukla, A.; Rasik, A.M.; Dhawan, B.N. Asiaticoside-induced elevation of antioxidant levels in healing wounds. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 1999, 13, 50–54. [Google Scholar] [CrossRef]
- Verma, N.; Kumari, U.; Mittal, S.; Mittal, A.K. Effect of asiaticoside on the healing of skin wounds in the carp Cirrhinus mrigala: An immunohistochemical investigation. Tissue Cell 2017, 49, 734–745. [Google Scholar] [CrossRef]
- Jung, E.; Lee, J.A.; Shin, S.; Roh, K.B.; Kim, J.H.; Park, D. Madecassoside inhibits melanin synthesis by blocking ultraviolet-induced inflammation. Molecules 2013, 18, 15724–15736. [Google Scholar] [CrossRef] [Green Version]
- Ling, Y.; Gong, Q.; Xiong, X.; Sun, L.; Zhao, W.; Zhu, W.; Lu, Y. Protective effect of madecassoside on H(2)O(2)-induced oxidative stress and autophagy activation in human melanocytes. Oncotarget 2017, 8, 51066–51075. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Xu, H.; Lu, Q.; Xu, Z.; Bian, D.; Xia, Y.; Wei, Z.; Gong, Z.; Dai, Y. Madecassoside suppresses migration of fibroblasts from keloids: Involvement of p38 kinase and PI3K signaling pathways. Burns 2012, 38, 677–684. [Google Scholar] [CrossRef]
- OuYang, Q.; Pan, Y.; Luo, H.; Xuan, C.; Liu, J.; Liu, J. MAD ointment ameliorates Imiquimod-induced psoriasiform dermatitis by inhibiting the IL-23/IL-17 axis in mice. Int. Immunopharmacol. 2016, 39, 369–376. [Google Scholar] [CrossRef]
- Lee, J.; Jung, E.; Lee, H.; Seo, Y.; Koh, J.; Park, D. Evaluation of the effects of a preparation containing asiaticoside on periocular wrinkles of human volunteers. Int. J. Cosmet. Sci. 2008, 30, 167–173. [Google Scholar] [CrossRef]
- Kwon, K.J.; Bae, S.; Kim, K.; An, I.S.; Ahn, K.J.; An, S.; Cha, H.J. Asiaticoside, a component of Centella asiatica, inhibits melanogenesis in B16F10 mouse melanoma. Mol. Med. Rep. 2014, 10, 503–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.H. Anti-glycative effects of asiatic acid in human keratinocyte cells. Biomedicine 2014, 4, 19. [Google Scholar] [CrossRef]
- Lee, Y.S.; Jin, D.; Beak, S.; Lee, E.; Kim, J. Inhibition of ultraviolet-A-modulated signaling pathways by asiatic acid and ursolic acid in HaCaT human keratinocytes. Eur. J. Pharmacol. 2003, 476, 173–178. [Google Scholar]
- Song, J.; Dai, Y.; Bian, D.; Zhang, H.; Xu, X.; Xia, Y.; Gong, Z. Madecassoside induces apoptosis of keloid fibroblasts via a mitochondrial-dependent pathway. Drug Dev. Res. 2011, 72, 315–322. [Google Scholar] [CrossRef]
- Wu, X.; Bian, D.; Dou, Y.; Gong, Z.; Tan, Q.; Xia, Y.; Dai, Y. Asiaticoside hinders the invasive growth of keloid fibroblasts through inhibition of the GDF-9/MAPK/Smad pathway. J. Biochem. Mol. Toxicol. 2017, 31, e21922. [Google Scholar] [CrossRef]
- Tang, B.; Zhu, B.; Liang, Y.; Bi, L.; Hu, Z.; Chen, B.; Zhang, K.; Zhu, J. Asiaticoside suppresses collagen expression and TGF-beta/Smad signaling through inducing Smad7 and inhibiting TGF-betaRI and TGF-betaRII in keloid fibroblasts. Arch. Dermatol. Res. 2011, 303, 563–572. [Google Scholar] [CrossRef]
- Lee, J.; Jung, E.; Kim, Y.; Park, J.; Park, J.; Hong, S.; Kim, J.; Hyun, C.; Kim, Y.S.; Park, D. Asiaticoside induces human collagen I synthesis through TGFβ receptor I kinase (TβRI kinase)-independent Smad signaling. Planta Med. 2006, 72, 324–328. [Google Scholar] [CrossRef]
- Ju-lin, X.; Shao-hai, Q.; Tian-zeng, L.; Bin, H.; Jing-ming, T.; Ying-bin, X.; Xu-sheng, L.; Bin, S.; Hui-zhen, L.; Yong, H. Effect of asiaticoside on hypertrophic scar in the rabbit ear model. J. Cutan. Pathol. 2009, 36, 234–239. [Google Scholar] [CrossRef]
- Qi, S.; Xie, J.; Pan, S.; Xu, Y.; Li, T.; Tang, J.; Liu, X.; Shu, B.; Liu, P. Effects of asiaticoside on the expression of Smad protein by normal skin fibroblasts and hypertrophic scar fibroblasts. Clin. Exp. Dermatol. Clin. Dermatol. 2008, 33, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Bian, D.; Zhang, J.; Wu, X.; Dou, Y.; Yang, Y.; Tan, Q.; Xia, Y.; Gong, Z.; Dai, Y. Asiatic acid isolated from Centella asiatica inhibits TGF-beta1-induced collagen expression in human keloid fibroblasts via PPAR-gamma activation. Int. J. Biol. Sci. 2013, 9, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Smolen, J.S.; Aletaha, D.; Koeller, M.; Weisman, M.H.; Emery, P. New therapies for treatment of rheumatoid arthritis. Lancet 2007, 370, 1861–1874. [Google Scholar] [CrossRef]
- Myers, L.K.; Rosloniec, E.F.; Cremer, M.A.; Kang, A.H. Collagen-induced arthritis, an animal model of autoimmunity. Life Sci. 1997, 61, 1861–1878. [Google Scholar] [CrossRef]
- Kannan, K.; Ortmann, R.A.; Kimpel, D. Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology 2005, 12, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Dai, Y.; Yao, X.; Li, Y.; Luo, Y.; Xia, Y.; Gong, Z. Anti-rheumatoid arthritic effect of madecassoside on type II collagen-induced arthritis in mice. Int. Immunopharmacol. 2008, 8, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gong, X.; Zhang, L.; Zhang, Z.; Luo, F.; Zhou, Q.; Chen, J.; Wan, J. Madecassoside attenuates inflammatory response on collagen-induced arthritis in DBA/1 mice. Phytomedicine 2009, 16, 538–546. [Google Scholar] [CrossRef]
- Wang, T.; Wei, Z.; Dou, Y.; Yang, Y.; Leng, D.; Kong, L.; Dai, Y.; Xia, Y. Intestinal interleukin-10 mobilization as a contributor to the anti-arthritis effect of orally administered madecassoside: A unique action mode of saponin compounds with poor bioavailability. Biochem. Pharmacol. 2015, 94, 30–38. [Google Scholar] [CrossRef]
- Rose, B.J.; Kooyman, D.L. A tale of two joints: The role of matrix metalloproteases in cartilage biology. Dis. Markers 2016, 2016, 4895050. [Google Scholar] [CrossRef] [Green Version]
- Yoshihara, Y.; Nakamura, H.; Obata, K.; Yamada, H.; Hayakawa, T.; Fujikawa, K.; Okada, Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis. 2000, 59, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Liacini, A.; Sylvester, J.; Li, W.Q.; Zafarullah, M. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol. 2002, 21, 251–262. [Google Scholar] [CrossRef]
- Yu, W.G.; Shen, Y.; Wu, J.Z.; Gao, Y.B.; Zhang, L.X. Madecassoside impedes invasion of rheumatoid fibroblast-like synoviocyte from adjuvant arthritis rats via inhibition of NF-kappaB-mediated matrix metalloproteinase-13 expression. Chin. J. Nat. Med. 2018, 16, 330–338. [Google Scholar]
- Sasmita, A.O.; Ling, A.P.K.; Voon, K.G.L.; Koh, R.Y.; Wong, Y.P. Madecassoside activates antineuroinflammatory mechanisms by inhibiting lipopolysaccharideinduced microglial inflammation. Int. J. Mol. Med. 2018, 41, 3033–3040. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, S.; Huang, R.; Wei, L.; Tan, S.; Liang, C.; Lv, S.; Chen, Y.; Liang, S.; Tian, Y.; et al. Protective effect of madecassoside against cognitive impairment induced by D-galactose in mice. Pharmacol. Biochem. Behav. 2014, 124, 434–442. [Google Scholar] [CrossRef]
- Nalinratana, N.; Meksuriyen, D.; Ongpipattanakul, B. Differences in Neuritogenic Activity and Signaling Activation of Madecassoside, Asiaticoside, and Their Aglycones in Neuro-2a cells. Planta Med. 2018, 84, 1165–1173. [Google Scholar] [CrossRef]
- Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine 2000, 7, 427–448. [Google Scholar] [CrossRef]
- Mamun, A.A.; Hashimoto, M.; Katakura, M.; Matsuzaki, K.; Hossain, S.; Arai, H.; Shido, O. Neuroprotective Effect of Madecassoside Evaluated Using Amyloid Β1-42-Mediated in Vitro and in Vivo Alzheimer’s Disease Models. Int. J. Indig. Med. Plants 2014, 47, 1669–1682. [Google Scholar]
- Mamun, A.; Hashimoto, M.; Hossain, S.; Katakura, M.; Arai, H.; Shido, O. Confirmation of the Experimentally-Proven Therapeutic Utility of Madecassoside in an Aβ1-42 Infusion Rat Model of Alzheimer’s Disease by in Silico Analyses. Adv. Alzheimer’s Dis. 2014, 4, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, X.; Li, D.; Luo, M.; Li, Y.; Song, L.; Jiang, X. Asiaticoside ameliorates β-amyloid-induced learning and memory deficits in rats by inhibiting mitochondrial apoptosis and reducing inflammatory factors. Exp. Ther. Med. 2017, 13, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, D.; Jiang, X.; Liu, Y.; Sun, Y.; Cao, S.; Zhang, Z. Asiaticoside attenuates cell growth inhibition and apoptosis induced by Aβ1-42 via inhibiting the TLR4/NF-κB signaling pathway in human brain microvascular endothelial cells. Front. Pharmacol. 2018, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Huang, R.; Zhang, S.; Wei, L.; Zhuo, L.; Wu, X.; Tang, A.; Huang, Q. Beneficial effects of asiaticoside on cognitive deficits in senescence-accelerated mice. Fitoterapia 2013, 87, 69–77. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, P.; Zhou, J.; Liu, M.; Jiang, X. Effects of asiaticoside on human umbilical vein endothelial cell apoptosis induced by Abeta1-42. Int. J. Clin. Exp. Med. 2015, 8, 15828–15833. [Google Scholar]
- Hossain, S.; Hashimoto, M.; Katakura, M.; Al Mamun, A.; Shido, O. Medicinal value of asiaticoside for Alzheimer’s disease as assessed using single-molecule-detection fluorescence correlation spectroscopy, laser-scanning microscopy, transmission electron microscopy, and in silico docking. BMC Complement. Altern. Med. 2015, 15, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rather, M.A.; Thenmozhi, A.J.; Manivasagam, T.; Nataraj, J.; Essa, M.M.; Chidambaram, S.B. Asiatic acid nullified aluminium toxicity in in vitro model of Alzheimer’s disease. Front. Biosci. (Elite Ed.) 2018, 10, 287–299. [Google Scholar]
- Rather, M.A.; Thenmozhi, A.J.; Manivasagam, T.; Bharathi, M.D.; Essa, M.M.; Guillemin, G.J. Neuroprotective role of Asiatic acid in aluminium chloride induced rat model of Alzheimer’s disease. Front. Biosci. (Schol. Ed.) 2018, 10, 262–275. [Google Scholar]
- Rather, M.A.; Justin-Thenmozhi, A.; Manivasagam, T.; Saravanababu, C.; Guillemin, G.J.; Essa, M.M. Asiatic acid attenuated aluminum chloride-induced tau pathology, oxidative stress and apoptosis via AKT/GSK-3β signaling pathway in Wistar rats. Neurotox. Res. 2019, 35, 955–968. [Google Scholar] [CrossRef]
- Cheng, W.; Chen, W.; Wang, P.; Chu, J. Asiatic acid protects differentiated PC12 cells from Aβ25–35-induced apoptosis and tau hyperphosphorylation via regulating PI3K/Akt/GSK-3β signaling. Life Sci. 2018, 208, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, J.; Dou, Y.; Xia, B.; Rong, W.; Rimbach, G.; Lou, Y. Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis. Eur. J. Pharmacol. 2012, 679, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ternchoocheep, K.; Surangkul, D.; Ysothonsreekul, S. The recovery and protective effects of asiatic acid on differentiated human neuroblastoma SH-SY5Y cells cytotoxic-induced by cholesterol. Asian Pac. J. Trop. Biomed. 2017, 7, 416–420. [Google Scholar] [CrossRef]
- Patil, S.P.; Maki, S.; Khedkar, S.A.; Rigby, A.C.; Chan, C. Withanolide A and asiatic acid modulate multiple targets associated with amyloid-β precursor protein processing and amyloid-β protein clearance. J. Nat. Prod. 2010, 73, 1196–1202. [Google Scholar] [CrossRef] [Green Version]
- Nasir, M.; Habsah, M.; Zamzuri, I.; Rammes, G.; Hasnan, J.; Abdullah, J. Effects of asiatic acid on passive and active avoidance task in male Spraque–Dawley rats. J. Ethnopharmacol. 2011, 134, 203–209. [Google Scholar] [CrossRef]
- Sirichoat, A.; Chaijaroonkhanarak, W.; Prachaney, P.; Pannangrong, W.; Leksomboon, R.; Chaichun, A.; Wigmore, P.; Welbat, J.U. Effects of asiatic acid on spatial working memory and cell proliferation in the adult rat hippocampus. Nutrients 2015, 7, 8413–8423. [Google Scholar] [CrossRef] [Green Version]
- Chaisawang, P.; Sirichoat, A.; Chaijaroonkhanarak, W.; Pannangrong, W.; Sripanidkulchai, B.; Wigmore, P.; Welbat, J.U. Asiatic acid protects against cognitive deficits and reductions in cell proliferation and survival in the rat hippocampus caused by 5-fluorouracil chemotherapy. PLoS ONE 2017, 12, e0180650. [Google Scholar] [CrossRef] [PubMed]
- Umka Welbat, J.; Sirichoat, A.; Chaijaroonkhanarak, W.; Prachaney, P.; Pannangrong, W.; Pakdeechote, P.; Sripanidkulchai, B.; Wigmore, P. Asiatic acid prevents the deleterious effects of valproic acid on cognition and hippocampal cell proliferation and survival. Nutrients 2016, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Qu, R.; Zhang, J.; Li, L.; Ma, S. Neuroprotective effects of madecassoside in early stage of Parkinson’s disease induced by MPTP in rats. Fitoterapia 2013, 90, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Sampath, U.; Janardhanam, V.A. Asiaticoside, a trisaccaride triterpene induces biochemical and molecular variations in brain of mice with parkinsonism. Transl. Neurodegener. 2013, 2, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Wang, Q.; Sun, L.; Li, X.; Deng, J.; Li, L.; Zhang, J.; Xu, R.; Ma, S. Asiaticoside: Attenuation of neurotoxicity induced by MPTP in a rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax. Pharmacol. Biochem. Behav. 2012, 100, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Nataraj, J.; Manivasagam, T.; Thenmozhi, A.J.; Essa, M.M. Neurotrophic effect of asiatic acid, a triterpene of Centella asiatica against chronic 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine hydrochloride/probenecid mouse model of Parkinson’s disease: The role of MAPK, PI3K-Akt-GSK3β and mTOR signalling pathways. Neurochem. Res. 2017, 42, 1354–1365. [Google Scholar] [CrossRef]
- Xiong, Y.; Ding, H.; Xu, M.; Gao, J. Protective effects of asiatic acid on rotenone-or H 2 O 2-induced injury in SH-SY5Y cells. Neurochem. Res. 2009, 34, 746–754. [Google Scholar] [CrossRef]
- Ding, H.; Xiong, Y.; Sun, J.; Chen, C.; Gao, J.; Xu, H. Asiatic acid prevents oxidative stress and apoptosis by inhibiting the translocation of α-synuclein into mitochondria. Front. Neurosci. 2018, 12, 431. [Google Scholar] [CrossRef]
- Nataraj, J.; Manivasagam, T.; Justin Thenmozhi, A.; Essa, M.M. Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr. Neurosci. 2017, 20, 351–359. [Google Scholar] [CrossRef]
- Gopi, M.; Janardhanam, V.A. Asiaticoside: Attenuation of rotenone induced oxidative burden in a rat model of hemiparkinsonism by maintaining the phosphoinositide-mediated synaptic integrity. Pharmacol. Biochem. Behav. 2017, 155, 1–15. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, Y.P.; Liu, J.; Li, W.H.; Yang, J.; Sui, X.; Yuan, X.; Nie, Z.Y.; Liu, Y.Q.; Chen, D.; et al. Neuroprotective effects of madecassoside against focal cerebral ischemia reperfusion injury in rats. Brain Res. 2014, 1565, 37–47. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, C.; Li, W.H.; Liu, J.; He, H.H.; Long, J.H.; Yang, J.; Sui, X.; Wang, S.; You, Z.; et al. Madecassoside protects BV2 microglial cells from oxygen-glucose deprivation/reperfusion-induced injury via inhibition of the toll-like receptor 4 signaling pathway. Brain Res. 2018, 1679, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Liu, B.; Li, P. Nerve Protective Effect of Asiaticoside against Ischemia-Hypoxia in Cultured Rat Cortex Neurons. Med. Sci. Monit. 2015, 21, 3036–3041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Yin, Z.; Jiang, C.; Ma, Z.; Fu, Q.; Qu, R.; Ma, S. Asiaticoside attenuates memory impairment induced by transient cerebral ischemia–reperfusion in mice through anti-inflammatory mechanism. Pharmacol. Biochem. Behav. 2014, 122, 7–15. [Google Scholar] [CrossRef]
- Krishnamurthy, R.G.; Senut, M.; Zemke, D.; Min, J.; Frenkel, M.B.; Greenberg, E.J.; Yu, S.; Ahn, N.; Goudreau, J.; Kassab, M. Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. J. Neurosci. Res. 2009, 87, 2541–2550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Seo, Y.H.; Jang, J.; Jeong, C.; Lee, S.; Park, B. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway. J. Neuroinflammation 2017, 14, 240. [Google Scholar] [CrossRef]
- Loganathan, C.; Thayumanavan, P. Asiatic acid prevents the quinolinic acid-induced oxidative stress and cognitive impairment. Metab. Brain Dis. 2018, 33, 151–159. [Google Scholar] [CrossRef]
- Liang, X.; Huang, Y.N.; Chen, S.W.; Wang, W.J.; Xu, N.; Cui, S.; Liu, X.H.; Zhang, H.; Liu, Y.N.; Liu, S. Antidepressant-like effect of asiaticoside in mice. Pharmacol. Biochem. Behav. 2008, 89, 444–449. [Google Scholar] [CrossRef]
- Hou, T.; Li, X.; Peng, C. Borneol enhances the antidepressant effects of asiaticoside by promoting its distribution into the brain. Neurosci. Lett. 2017, 646, 56–61. [Google Scholar] [CrossRef]
- Luo, L.; Liu, X.; Mu, R.; Wu, Y.; Liu, B.; Geng, D.; Liu, Q.; Yi, L. Hippocampal BDNF signaling restored with chronic asiaticoside treatment in depression-like mice. Brain Res. Bull. 2015, 114, 62–69. [Google Scholar] [CrossRef]
- Ceremuga, T.E.; Valdivieso, D.; Kenner, C.; Lucia, A.; Lathrop, K.; Stailey, O.; Bailey, H.; Criss, J.; Linton, J.; Fried, J. Evaluation of the anxiolytic and antidepressant effects of asiatic acid, a compound from Gotu kola or Centella asiatica, in the male Sprague Dawley rat. AANA J. 2015, 83. [Google Scholar]
- Chen, S.W.; Wang, W.J.; Li, W.J.; Wang, R.; Li, Y.L.; Huang, Y.N.; Liang, X. Anxiolytic-like effect of asiaticoside in mice. Pharmacol. Biochem. Behav. 2006, 85, 339–344. [Google Scholar] [CrossRef]
- Wijeweera, P.; Arnason, J.; Koszycki, D.; Merali, Z. Evaluation of anxiolytic properties of Gotukola–(Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomedicine 2006, 13, 668–676. [Google Scholar] [CrossRef]
- Bobade, V.; Bodhankar, S.L.; Aswar, U.; Vishwaraman, M.; Thakurdesai, P. Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors. Chin. J. Nat. Med. 2015, 13, 274–282. [Google Scholar] [CrossRef]
- Qi, F.Y.; Yang, L.; Tian, Z.; Zhao, M.G.; Liu, S.B.; An, J.Z. Neuroprotective effects of Asiaticoside. Neural Regen. Res. 2014, 9, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Xiong, Y.; Liu, J.; Qian, J.; Zhu, L.; Gao, J. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol. Sin. 2012, 33, 578–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Mong, M.; Yang, Y.; Yin, M. Asiatic acid and maslinic acid attenuated kainic acid-induced seizure through decreasing hippocampal inflammatory and oxidative stress. Epilepsy Res. 2018, 139, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Yu, H.; Chen, S.; Ma, C.; Ma, X.; Xu, L.; Ma, Z.; Qu, R.; Ma, S. Asiaticoside attenuates diabetes-induced cognition deficits by regulating PI3K/Akt/NF-κB pathway. Behav. Brain Res. 2015, 292, 288–299. [Google Scholar] [CrossRef]
- Yellon, D.M.; Baxter, G.F. Reperfusion injury revisited: Is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc. Med. 1999, 9, 245–249. [Google Scholar] [CrossRef]
- Yellon, D.M.; Baxter, G.F. Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: Distant dream or near reality? Heart 2000, 83, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Li, G.G.; Bian, G.X.; Ren, J.P.; Wen, L.Q.; Zhang, M.; Lu, Q.J. Protective effect of madecassoside against reperfusion injury after regional ischemia in rabbit heart in vivo. Yao Xue Xue Bao 2007, 42, 475–480. [Google Scholar]
- Bian, G.X.; Li, G.G.; Yang, Y.; Liu, R.T.; Ren, J.P.; Wen, L.Q.; Guo, S.M.; Lu, Q.J. Madecassoside reduces ischemia-reperfusion injury on regional ischemia induced heart infarction in rat. Biol. Pharm. Bull. 2008, 31, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Li, X.; Zhang, X.; Hou, Y.; Zeng, A.; Xie, Y.; Wang, S. Madecassoside suppresses LPS-induced TNF-α production in cardiomyocytes through inhibition of ERK, p38, and NF-κB activity. Int. Immunopharmacol. 2010, 10, 723–729. [Google Scholar] [CrossRef]
- Huang, X.; Zuo, L.; Lv, Y.; Chen, C.; Yang, Y.; Xin, H.; Li, Y.; Qian, Y. Asiatic acid attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β/HIF-1α signaling in rat H9c2 cardiomyocytes. Molecules 2016, 21, 1248. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.; Mong, M.; Liu, W.; Huang, C.; Yin, M. Three pentacyclic triterpenes protect H9c2 cardiomyoblast cells against high-glucose-induced injury. Free Radic. Res. 2014, 48, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, L.; Lu, H. Asiatic acid enhances antioxidant and anti-inflammatory activity to suppress isoproterenol induced cardiotoxicity. Int. J. Pharmacol. 2018, 14, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Wang, F.; Wang, Z.; Zhang, J.; Yang, X. Asiatic acid inhibits lactate-induced cardiomyocyte apoptosis through the regulation of the lactate signaling cascade. Int. J. Mol. Med. 2016, 38, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Hu, M.; Chen, Z.; Xiang, F.; Chen, G.; Yan, W.; Peng, Q.; Chen, X. Asiatic acid enhances survival of human AC16 cardiomyocytes under hypoxia by upregulating miR-1290. IUBMB Life 2017, 69, 660–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, L.; Xu, J.; Yi, C.; Xu, X.; Ma, C.; Yang, J.; Wang, F.; Zhang, Y.; Wang, X. Asiatic acid attenuates the progression of left ventricular hypertrophy and heart failure induced by pressure overload by inhibiting myocardial remodeling in mice. J. Cardiovasc. Pharmacol. 2015, 66, 558–568. [Google Scholar] [CrossRef]
- Huo, L.; Shi, W.; Chong, L.; Wang, J.; Zhang, K.; Li, Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp. Ther. Med. 2016, 11, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, L.; Xu, J.; Yi, C.; Xu, X.; Wang, F.; Gu, W.; Zhang, Y.; Wang, X. Asiatic acid attenuates cardiac hypertrophy by blocking transforming growth factor-β1-mediated hypertrophic signaling in vitro and in vivo. Int. J. Mol. Med. 2014, 34, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Dai, J.; Wei, W.; Zhang, W.; Xu, S.; Liao, H.; Yang, Z.; Tang, Q. Asiatic acid protects against cardiac hypertrophy through activating AMPKα signalling pathway. Int. J. Biol. Sci. 2016, 12, 861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Si, L.; Xu, J.; Yi, C.; Wang, F.; Gu, W.; Zhang, Y.; Wang, X. Asiatic acid inhibits cardiac hypertrophy by blocking interleukin-1beta-activated nuclear factor-kappaB signaling in vitro and in vivo. J. Thorac. Dis. 2015, 7, 1787–1797. [Google Scholar] [CrossRef] [PubMed]
- Bunbupha, S.; Pakdeechote, P.; Kukongviriyapan, U.; Prachaney, P.; Kukongviriyapan, V. Asiatic acid reduces blood pressure by enhancing nitric oxide bioavailability with modulation of eNOS and p47phox expression in L-NAME-induced hypertensive rats. Phytother. Res. 2014, 28, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Bunbupha, S.; Prachaney, P.; Kukongviriyapan, U.; Kukongviriyapan, V.; Welbat, J.U.; Pakdeechote, P. Asiatic acid alleviates cardiovascular remodelling in rats with L-NAME-induced hypertension. Clin. Exp. Pharmacol. Physiol. 2015, 42, 1189–1197. [Google Scholar] [CrossRef]
- Pakdeechote, P.; Bunbupha, S.; Kukongviriyapan, U.; Prachaney, P.; Khrisanapant, W.; Kukongviriyapan, V. Asiatic acid alleviates hemodynamic and metabolic alterations via restoring eNOS/iNOS expression, oxidative stress, and inflammation in diet-induced metabolic syndrome rats. Nutrients 2014, 6, 355–370. [Google Scholar] [CrossRef] [Green Version]
- Maneesai, P.; Bunbupha, S.; Kukongviriyapan, U.; Prachaney, P.; Tangsucharit, P.; Kukongviriyapan, V.; Pakdeechote, P. Asiatic acid attenuates renin-angiotensin system activation and improves vascular function in high-carbohydrate, high-fat diet fed rats. BMC Complement. Altern. Med. 2016, 16, 123. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.; Yang, H.; Yin, M. Asiatic acid and maslinic acid protected heart via anti-glycative and anti-coagulatory activities in diabetic mice. Food Funct. 2015, 6, 2967–2974. [Google Scholar] [CrossRef]
- Moran, A.E.; Roth, G.A.; Narula, J.; Mensah, G.A. 1990–2010 Global Cardiovascular Disease Atlas. Glob. Heart 2014, 9, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Fong, L.Y.; Ng, C.T.; Zakaria, Z.A.; Baharuldin, M.T.H.; Arifah, A.K.; Hakim, M.N.; Zuraini, A. Asiaticoside inhibits TNF-α-induced endothelial hyperpermeability of human aortic endothelial cells. Phytother. Res. 2015, 29, 1501–1508. [Google Scholar] [CrossRef]
- Jing, L.; Haitao, W.; Qiong, W.; Fu, Z.; Nan, Z.; Xuezheng, Z. Anti inflammatory effect of asiaticoside on human umbilical vein endothelial cells induced by ox-LDL. Cytotechnology 2018, 70, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Fong, L.Y.; Ng, C.T.; Cheok, Z.L.; Moklas, M.A.M.; Hakim, M.N.; Ahmad, Z. Barrier protective effect of asiatic acid in TNF-α-induced activation of human aortic endothelial cells. Phytomedicine 2016, 23, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Fong, L.Y.; Ng, C.T.; Yong, Y.K.; Hakim, M.N.; Ahmad, Z. Asiatic acid stabilizes cytoskeletal proteins and prevents TNF-α-induced disorganization of cell-cell junctions in human aortic endothelial cells. Vasc. Pharmacol. 2019, 117, 15–26. [Google Scholar] [CrossRef] [PubMed]
- King, T.E., Jr.; Pardo, A.; Selman, M. Idiopathic pulmonary fibrosis. Lancet 2011, 378, 1949–1961. [Google Scholar] [CrossRef]
- Zhang, L.N.; Zheng, J.J.; Zhang, L.; Gong, X.; Huang, H.; Wang, C.D.; Wang, B.; Wu, M.J.; Li, X.H.; Sun, W.J.; et al. Protective effects of asiaticoside on septic lung injury in mice. Exp. Toxicol. Pathol. 2011, 63, 519–525. [Google Scholar] [CrossRef]
- Lu, G.X.; Bian, D.F.; Ji, Y.; Guo, J.M.; Wei, Z.F.; Jiang, S.D.; Xia, Y.F.; Dai, Y. Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice by downregulating collagen deposition. Phytother. Res. 2014, 28, 1224–1231. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, Y.F.; Lv, Q.; Yue, M.F.; Qiao, S.M.; Yang, Y.; Wei, Z.F.; Dai, Y. Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice through promoting the generation of hepatocyte growth factor via PPAR-gamma in colon. Br. J. Pharmacol. 2016, 173, 1219–1235. [Google Scholar] [CrossRef] [Green Version]
- Ebina, M.; Shimizukawa, M.; Narumi, K.; Miki, M.; Koinuma, D.; Watanabe, M.; Munakata, H.; Nukiwa, T. Towards an effective gene therapy for idiopathic pulmonary fibrosis: Anti-inflammation, antifibrosis, and regeneration. Chest 2002, 121, 32S–33S. [Google Scholar] [CrossRef]
- Dohi, M.; Hasegawa, T.; Yamamoto, K.; Marshall, B.C. Hepatocyte growth factor attenuates collagen accumulation in a murine model of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2000, 162, 2302–2307. [Google Scholar] [CrossRef]
- Dong, S.; Liu, Y.; Wei, F.; Tan, H.; Han, Z. Asiatic acid ameliorates pulmonary fibrosis induced by bleomycin (BLM) via suppressing pro-fibrotic and inflammatory signaling pathways. Biomed. Pharmacother. 2017, 89, 1297–1309. [Google Scholar] [CrossRef]
- Johnson, E.R.; Matthay, M.A. Acute lung injury: Epidemiology, pathogenesis, and treatment. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 243–252. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, D.; Wan, J.; Zhou, Q.; Xiao, S.; Wu, K. Effects of asiaticoside on the balance of inflammatory factors of mouse’s acute lung injury induced by LPS. Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 2008, 31, 547–549. [Google Scholar]
- Qiu, J.; Yu, L.; Zhang, X.; Wu, Q.; Wang, D.; Wang, X.; Xia, C.; Feng, H. Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κB signaling pathway. Int. Immunopharmacol. 2015, 26, 181–187. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, X.; Yang, M. Asiatic acid inhibits lipopolysaccharide-induced acute lung injury in mice. Inflammation 2016, 39, 1642–1648. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, M.; He, F.; Yao, W.; Bian, Z.; Wang, X.; Zhu, L. Protective effects of asiatic acid against spinal cord injury-induced acute lung injury in rats. Inflammation 2016, 39, 1853–1861. [Google Scholar] [CrossRef]
- Lee, J.; Park, H.A.; Kwon, O.; Jang, Y.; Kim, J.Y.; Choi, B.K.; Lee, H.J.; Lee, S.; Paik, J.; Oh, S. Asiatic acid inhibits pulmonary inflammation induced by cigarette smoke. Int. Immunopharmacol. 2016, 39, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Elsherbiny, N.M.; El-Sherbiny, M. Thymoquinone attenuates Doxorubicin-induced nephrotoxicity in rats: Role of Nrf2 and NOX4. Chem. Biol. Interact. 2014, 223, 102–108. [Google Scholar] [CrossRef]
- Chandran, K.; Aggarwal, D.; Migrino, R.Q.; Joseph, J.; McAllister, D.; Konorev, E.A.; Antholine, W.E.; Zielonka, J.; Srinivasan, S.; Avadhani, N.G. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-Q. Biophys. J. 2009, 96, 1388–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, S.; Kumar, N.R.; Kaur, J. In vivo Studies on the Protective Effect of Propolis on Doxorubicin-Induced Toxicity in Liver of Male Rats. Toxicol. Int. 2014, 21, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, T.W.; JAMALL, I.S. Relative importance of intracellular glutathione peroxidase and catalase in vivo for prevention of peroxidation to the heart. Cardiovasc. Res. 1989, 23, 774–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Z.; Ye, J.; Qin, Z.; Ding, X. Protective effects of madecassoside against Doxorubicin induced nephrotoxicity in vivo and in vitro. Sci. Rep. 2015, 5, 18314. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Wang, W.; Xu, M.; Zhang, J. Asiatic acid ameliorates tubulointerstitial fibrosis in mice with ureteral obstruction. Exp. Ther. Med. 2013, 6, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.M.; Zhang, Y.; Huang, X.R.; Ren, G.L.; Li, J.; Lan, H.Y. Treatment of renal fibrosis by rebalancing TGF-beta/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget 2015, 6, 36984–36997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Guo, Y.; Huang, T.; Zhao, J.; Huang, X.; Tang, H.; An, N.; Pan, Q.; Xu, Y.; Liu, H. Asiatic acid protects against cisplatin-induced acute kidney injury via anti-apoptosis and anti-inflammation. Biomed. Pharmacother. 2018, 107, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Kimbell, B.; Murray, S.A. What is the patient experience in advanced liver disease? A scoping review of the literature. BMJ Support. Palliat. Care 2015, 5, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Hishinuma, I.; Nagakawa, J.; Hirota, K.; Miyamoto, K.; Tsukidate, K.; Yamanaka, T.; Katayama, K.; Yamatsu, I. Involvement of tumor necrosis factor-α in development of hepatic injury in galactosamine-sensitized mice. Hepatology 1990, 12, 1187–1191. [Google Scholar] [CrossRef]
- Wang, W.; Wu, L.; Li, Q.; Zhang, Z.; Xu, L.; Lin, C.; Gao, L.; Zhao, K.; Liang, F.; Zhang, Q.; et al. Madecassoside prevents acute liver failure in LPS/D-GalN-induced mice by inhibiting p38/NF-kappaB and activating Nrf2/HO-1 signaling. Biomed. Pharmacother. 2018, 103, 1137–1145. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Gong, X.; Luo, F.; Wang, B.; Hu, N.; Wang, C.; Zhang, Z.; Wan, J. Protective effects of Asiaticoside on acute liver injury induced by lipopolysaccharide/D-galactosamine in mice. Phytomedicine 2010, 17, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Zhang, Y.; Zhu, D.; Lou, Y. Protective effects of asiatic acid against D-galactosamine/lipopolysaccharide-induced hepatotoxicity in hepatocytes and kupffer cells co-cultured system via redox-regulated leukotriene C4 synthase expression pathway. Eur. J. Pharmacol. 2009, 603, 98–107. [Google Scholar] [CrossRef]
- Lee, Y.A.; Wallace, M.C.; Friedman, S.L. Pathobiology of liver fibrosis: A translational success story. Gut 2015, 64, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.X.; He, R.H.; Yang, G.; Tan, J.J.; Zhou, L.; Meng, X.M.; Huang, X.R.; Lan, H.Y. Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro. PLoS ONE 2012, 7, e31350. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Chen, Q.; Guo, A.; Fan, J.; Wang, R.; Zhang, H. Asiatic acid attenuates CCl4-induced liver fibrosis in rats by regulating the PI3K/AKT/mTOR and Bcl-2/Bax signaling pathways. Int. Immunopharmacol. 2018, 60, 1–8. [Google Scholar] [CrossRef]
- Fan, J.; Chen, Q.; Wei, L.; Zhou, X.; Wang, R.; Zhang, H. Asiatic acid ameliorates CCl4-induced liver fibrosis in rats: Involvement of Nrf2/ARE, NF-kappaB/IkappaBalpha, and JAK1/STAT3 signaling pathways. Drug Des. Dev. Ther. 2018, 12, 3595–3605. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Huang, Q.; Huang, R.; Chen, Y.; Lv, S.; Wei, L.; Liang, C.; Liang, S.; Zhuo, L.; Lin, X. Asiatic acid from Potentilla chinensis attenuate ethanol-induced hepatic injury via suppression of oxidative stress and Kupffer cell activation. Biol. Pharm. Bull. 2013, 36, 1980–1989. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Yang, H.; Lee, Y.; Lin, C.; Chang, M.; Yin, M. Asiatic acid ameliorates hepatic lipid accumulation and insulin resistance in mice consuming a high-fat diet. J. Agric. Food Chem. 2014, 62, 4625–4631. [Google Scholar] [CrossRef]
- Lu, Y.; Kan, H.; Wang, Y.; Wang, D.; Wang, X.; Gao, J.; Zhu, L. Asiatic acid ameliorates hepatic ischemia/reperfusion injury in rats via mitochondria-targeted protective mechanism. Toxicol. Appl. Pharmacol. 2018, 338, 214–223. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, S.; Wang, Y.; Wang, D.; Gao, J.; Zhu, L. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death. Eur. J. Pharmacol. 2016, 786, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yao, J.; Zou, C.; Zhang, H.; Zhang, S.; Liu, J.; Ma, G.; Jiang, P.; Zhang, W. Asiatic acid protects against hepatic ischemia/reperfusion injury by inactivation of Kupffer cells via PPARgamma/NLRP3 inflammasome signaling pathway. Oncotarget 2017, 8, 86339–86355. [Google Scholar] [CrossRef]
- Kamble, S.M.; Patil, C.R. Asiatic acid ameliorates doxorubicin-induced cardiac and hepato-renal toxicities with Nrf2 transcriptional factor activation in rats. Cardiovasc. Toxicol. 2018, 18, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Al-Saeedi, F.J. Study of the cytotoxicity of asiaticoside on rats and tumour cells. BMC Cancer 2014, 14, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Park, H.; Kim, W.; Cho, H.; Lee, J. Presence of autocrine hepatocyte growth factor-Met signaling and its role in proliferation and migration of SNU-484 gastric cancer cell line. Exp. Mol. Med. 2005, 37, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunwobi, O.O.; Liu, C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clin. Exp. Metastasis 2011, 28, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; You, K.; Li, J.; Wang, Y.; Xu, H.; Gao, B.; Wang, J. Madecassoside suppresses proliferation and invasiveness of HGF-induced human hepatocellular carcinoma cells via PKC-cMET-ERK1/2-COX-2-PGE2 pathway. Int. Immunopharmacol. 2016, 33, 24–32. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M.; Tao, Y.; Wang, G.; Xia, B. Madecassic acid inhibits the mouse colon cancer growth by inducing apoptosis and immunomodulation. J. BUON 2014, 19, 372–376. [Google Scholar]
- Al-Saeedi, F.J.; Bitar, M.; Pariyani, S. Effect of asiaticoside on 99mTc-tetrofosmin and 99mTc-sestamibi uptake in MCF-7 cells. J. Nucl. Med. Technol. 2011, 39, 279–283. [Google Scholar] [CrossRef]
- Yingchun, L.; Huihan, W.; Rong, Z.; Guojun, Z.; Ying, Y.; Zhuogang, L. Antitumor Activity of Asiaticoside Against Multiple Myeloma Drug-Resistant Cancer Cells Is Mediated by Autophagy Induction, Activation of Effector Caspases, and Inhibition of Cell Migration, Invasion, and STAT-3 Signaling Pathway. Med. Sci. Monit. 2019, 25, 1355–1361. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Q.; Xu, H.; Huang, Z. Asiatic acid promotes p21 (WAF1/CIP1) protein stability through attenuation of NDR1/2 dependent phosphorylation of p21 (WAF1/CIP1) in HepG2 human hepatoma cells. Asian Pac. J. Cancer Prev. 2014, 15, 963–967. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Jin, D.; Kwon, E.J.; Park, S.H.; Lee, E.; Jeong, T.C.; Nam, D.H.; Huh, K.; Kim, J. Asiatic acid, a triterpene, induces apoptosis through intracellular Ca2 release and enhanced expression of p53 in HepG2 human hepatoma cells. Cancer Lett. 2002, 186, 83–91. [Google Scholar] [CrossRef]
- Li, J.; Huang, R.; Yao, G.; Ye, M.; Wang, H.; Pan, Y.; Xiao, J. Synthesis and biological evaluation of novel aniline-derived asiatic acid derivatives as potential anticancer agents. Eur. J. Med. Chem. 2014, 86, 175–188. [Google Scholar] [CrossRef]
- Park, B.C.; Bosire, K.O.; Lee, E.; Lee, Y.S.; Kim, J. Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Lett. 2005, 218, 81–90. [Google Scholar] [CrossRef]
- Park, B.C.; Paek, S.; Lee, Y.; Kim, S.; Lee, E.; Choi, H.G.; Yong, C.S.; Kim, J. Inhibitory effects of asiatic acid on 7, 12-dimethylbenz [a] anthracene and 12-O-tetradecanoylphorbol 13-acetate-induced tumor promotion in mice. Biol. Pharm. Bull. 2007, 30, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Kavitha, C.V.; Jain, A.K.; Agarwal, C.; Pierce, A.; Keating, A.; Huber, K.M.; Serkova, N.J.; Wempe, M.F.; Agarwal, R.; Deep, G. Asiatic acid induces endoplasmic reticulum stress and apoptotic death in glioblastoma multiforme cells both in vitro and in vivo. Mol. Carcinog. 2015, 54, 1417–1429. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.; Choi, D.; Cardone, M.; Kim, C.W.; Sinskey, A.; Rha, C. Glioblastoma cell death induced by asiatic acid. Cell Biol. Toxicol. 2006, 22, 393–408. [Google Scholar] [CrossRef]
- Thakor, F.K.; Wan, K.; Welsby, P.J.; Welsby, G. Pharmacological effects of asiatic acid in glioblastoma cells under hypoxia. Mol. Cell. Biochem. 2017, 430, 179–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Ai, L.; Lv, T.; Jiang, X.; Liu, F. Asiatic acid, a triterpene, inhibits cell proliferation through regulating the expression of focal adhesion kinase in multiple myeloma cells. Oncol. Lett. 2013, 6, 1762–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddique, A.I.; Mani, V.; Renganathan, S.; Ayyanar, R.; Nagappan, A.; Namasivayam, N. Asiatic acid abridges pre-neoplastic lesions, inflammation, cell proliferation and induces apoptosis in a rat model of colon carcinogenesis. Chem. Biol. Interact. 2017, 278, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Siddique, A.I.; Mani, V.; Arivalagan, S.; Thomas, N.S.; Namasivayam, N. Asiatic acid attenuates pre-neoplastic lesions, oxidative stress, biotransforming enzymes and histopathological alterations in 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis. Toxicol. Mech. Methods 2017, 27, 136–150. [Google Scholar] [CrossRef]
- Tang, X.; Yang, X.; Jung, H.; Kim, S.; Jung, S.; Choi, D.; Park, W.; Park, H. Asiatic Acid Induces Colon Cancer Cell Growth Inhibition and Apoptosis through Mitochondrial Death Cascade. Biol. Pharm. Bull. 2009, 32, 1399–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.; Huang, J.; Ma, Y.; Chen, W.; Fan, Q.; Sun, X.; Shao, M.; Cai, H. Asiatic acid inhibits proliferation, migration and induces apoptosis by regulating Pdcd4 via the PI3K/Akt/mTOR/p70S6K signaling pathway in human colon carcinoma cells. Oncol. Lett. 2018, 15, 8223–8230. [Google Scholar] [CrossRef]
- Bunpo, P.; Kataoka, K.; Arimochi, H.; Nakayama, H.; Kuwahara, T.; Vinitketkumnuen, U.; Ohnishi, Y. Inhibitory effects of asiatic acid and CPT-11 on growth of HT-29 cells. J. Med. Investig. 2005, 52, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, L.; Cao, Q.; Zhai, F.; Yang, S.; Zhang, H. Asiatic acid exerts anticancer potential in human ovarian cancer cells via suppression of PI3K/Akt/mTOR signalling. Pharm. Biol. 2016, 54, 2377–2382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, Y.; Kuo, P.; Lin, L.; Lin, C. Asiatic Acid, a Triterpene, Induces Apoptosis and Cell Cycle Arrest through Activation of Extracellular Signal-Regulated Kinase and p38 Mitogen-Activated Protein Kinase Pathways in Human Breast Cancer Cells. J. Pharmacol. Exp. Ther. 2005, 313, 333. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Geng, J.; Guo, W.; Gao, J.; Zhu, X. Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm. Sin. B 2017, 7, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.B.; Kim, K.; Bae, S.; Choi, Y.; Cha, H.J.; Kim, S.Y.; Lee, J.H.; Jeon, S.H.; Jung, H.J.; Ahn, K.J.; et al. MicroRNA-1290 promotes asiatic acidinduced apoptosis by decreasing BCL2 protein level in A549 nonsmall cell lung carcinoma cells. Oncol. Rep. 2014, 32, 1029–1036. [Google Scholar] [CrossRef]
- Gurfinkel, D.M.; Chow, S.; Hurren, R.; Gronda, M.; Henderson, C.; Berube, C.; Hedley, D.W.; Schimmer, A.D. Disruption of the endoplasmic reticulum and increases in cytoplasmic calcium are early events in cell death induced by the natural triterpenoid Asiatic acid. Apoptosis 2006, 11, 1463–1471. [Google Scholar] [CrossRef]
- Wu, Q.; Lv, T.; Chen, Y.; Wen, L.; Zhang, J.; Jiang, X.; Liu, F. Apoptosis of HL-60 human leukemia cells induced by Asiatic acid through modulation of B-cell lymphoma 2 family proteins and the mitogen-activated protein kinase signaling pathway. Mol. Med. Rep. 2015, 12, 1429–1434. [Google Scholar] [CrossRef] [Green Version]
- Fitrianda, E.; Sukandar, E.Y.; Elfahmi, E.; Adnyana, I. Antidiabetic activity of extract, fractions, and asiaticoside compound isolated from Centella asiatica Linn. Leaves in alloxan-induced diabetic mice. Asian J. Pharm. Clin. Res. 2017, 10, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Sayeed, M.S.B.; Haque, M.A.; Hassan, M.M.; Islam, S.A. Phytochemical screening, Antioxidant, Anti-Alzheimer and Anti-diabetic activities of Centella asiatica. J. Nat. Prod. Plant. Resour. 2012, 2, 504–511. [Google Scholar]
- Radhika, S.; Senthilkumar, R.; Arumugam, P. A review on ethnic florae with antihyperglycemic efficacy. Int. J. Herb. Med. 2013, 1, 55–62. [Google Scholar]
- Ramachandran, V.; Saravanan, R. Efficacy of asiatic acid, a pentacyclic triterpene on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats. Phytomedicine 2013, 20, 230–236. [Google Scholar] [CrossRef]
- Ramachandran, V.; Saravanan, R.; Senthilraja, P. Antidiabetic and antihyperlipidemic activity of asiatic acid in diabetic rats, role of HMG CoA: In vivo and in silico approaches. Phytomedicine 2014, 21, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.; Saravanan, R. Asiatic acid prevents lipid peroxidation and improves antioxidant status in rats with streptozotocin-induced diabetes. J. Funct. Foods 2013, 5, 1077–1087. [Google Scholar] [CrossRef]
- Ramachandran, V.; Saravanan, R. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum. Exp. Toxicol. 2015, 34, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Xu, G.; Guo, X.; Luo, G.; Wu, L.; Hou, Y.; Guo, X.; Zhou, J.; Xu, T.; Qin, L. Protective effects of asiatic acid in a spontaneous type 2 diabetic mouse model. Mol. Med. Rep. 2017, 16, 1333–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; He, T.; Lu, Q.; Shang, J.; Sun, H.; Zhang, L. Asiatic acid preserves beta cell mass and mitigates hyperglycemia in streptozocin-induced diabetic rats. Diabetes Metab. Res. 2010, 26, 448–454. [Google Scholar] [CrossRef]
- Xue, W.; Qian, L.; Dong-Sheng, Y.; Yu-Peng, C.; Shang, J.; Zhang, L.; Hong-Bin, S.; Jun, L. Asiatic acid mitigates hyperglycemia and reduces islet fibrosis in Goto-Kakizaki rat, a spontaneous type 2 diabetic animal model. Chin. J. Nat. Med. 2015, 13, 529–534. [Google Scholar]
- Hsu, Y.; Hung, Y.; Hu, L.; Lee, Y.; Yin, M. Anti-diabetic effects of madecassic acid and rotundic acid. Nutrients 2015, 7, 10065–10075. [Google Scholar] [CrossRef] [Green Version]
- Arancibia-Radich, J.; González-Blázquez, R.; Alcala, M.; Martín-Ramos, M.; Viana, M.; Arribas, S.; Delporte, C.; Fernández-Alfonso, M.S.; Somoza, B.; Gil-Ortega, M. Beneficial effects of murtilla extract and madecassic acid on insulin sensitivity and endothelial function in a model of diet-induced obesity. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Swee Ching, T.; Ramkumar, R.; Subrat Kumar, B.; Purushothaman, K.; Fabian, D.; Ebenezer, C.; Stephen, A.; Furman, B.L.; Mayuren, C. Madecassoside protects pancreatic B cells from glucotoxicity and oxidative stress. In British Journal of Pharmacology; British Pharmacological Society: London, UK, 2019; Volume 176, p. 2990. [Google Scholar]
- Chen, Y.N.; Wu, C.G.; Shi, B.M.; Qian, K.; Ding, Y. The protective effect of asiatic acid on podocytes in the kidney of diabetic rats. Am. J. Transl. Res. 2018, 10, 3733–3741. [Google Scholar]
- Xing, Y.; Ji, Q.; Li, X.; Ming, J.; Zhang, N.; Zha, D.; Lin, Y. Asiaticoside protects cochlear hair cells from high glucose-induced oxidative stress via suppressing AGEs/RAGE/NF-κB pathway. Biomed. Pharmacother. 2017, 86, 531–536. [Google Scholar] [CrossRef]
Condition | Compound | Outcome | Reference |
---|---|---|---|
Skin related conditions | Asiaticoside | Promote cell proliferation and collagen synthesis | [79] |
Accelerate wound healing, suppress apoptosis | [85] | ||
Hinder keloid fibroblast’s invasive growth | [95] | ||
Madecassoside | Anti-oxidative, attenuate mitochondrial damage, promote autophagy | [87] | |
Decrease dermal inflammation, reduced keratinocyte proliferation | [89] | ||
Rheumatoid arthritis | Madecassoside | Increase systemic levels of IL-10 | [106] |
Prevent NF-κB translocation and phosphorylation | [110] | ||
Neurodegenarative diseases | Asiaticoside | Reduce learning and memory function impairment, Aβ build-up, IL-6 and TNF-α levels | [117] |
Attenuate Aβ1-42-induced cytotoxicity and apoptosis | [118] | ||
Promote cell proliferation, inhibit apoptosis | [120] | ||
Hinder early phase of fibrillogenesis | [121] | ||
Modulate expression of apoptotic factors | [143] | ||
Antidepressant-like action | [149,150] | ||
Antinociceptive effects | [154] | ||
Attenuate diabetes induced cognitive deficits | [158] | ||
Asiatic acid | Diminish mitochondrial dysfunction, oxidative stress | [122] | |
Regulate aluminium load, AChE activity, behavioural performance, Aβ levels and neuroinflammation | [123] | ||
Protect against oxidative stress, cholinergic deficits, tau pathology, apoptosis | [124] | ||
Protect against Aβ25-35 induced tau protein hyperphosphorylation | [125] | ||
Protect against cholesterol-induced cytotoxicity | [127] | ||
Increase hippocampal cell proliferation, stimulate spatial working memory | [130,131] | ||
Prevent neurogenesis and spatial memory impairment | [132] | ||
Reduce MDA, increase GSH content | [136] | ||
Protect against mitochondrial injury | [138] | ||
Reduce oxidative stress, maintain mitochondrial membrane potential | [139] | ||
Increased proteins expression involved in phosphoinotiside signalling | [140] | ||
Protect against neuroinflammation and neurotoxicity | [146] | ||
Prevent spatial memory loss and alleviate oxidative stress | [147] | ||
Antidepressant-like action, anxiolytic activity | [151] | ||
Decrease hippocampal inflammatory and oxidative stress | [157] | ||
Madecassoside | Reduce ROS production, downregulate pro-inflammatory components gene and protein expression | [111] | |
Attenuate microglia-mediated neuroinflammation | [142] | ||
Cardiovascular diseases | Asiatic acid | Attenuate isoproterenol-induced cardiotoxicity | [166] |
Attenuate lactate-induced cardiomyocyte apoptosis | [167] | ||
Protect against hypoxia-induced apoptosis | [168] | ||
Preserve cardiac function, inhibit left ventricular remodelling, alleviate cardiomyocyte apoptosis | [169] | ||
Inhibit p38 MAPK and ERK 1/2 phosphorylation | [170] | ||
Protect against cardiac hypertrophy and fibrosis | [172] | ||
Block IL-1β activated NF-κB signaling | [173] | ||
Suppress inflammation and oxidative stress | [175] | ||
Improve vascular function | [177] | ||
Attenuate glycative injury and coagulatory disorders | [178] | ||
Protect human aortic endothelial cells | [182,183] | ||
Asiaticoside | Impede endothelial hyperpermeability | [183] | |
Disrupt development of early atherosclerotic events | [181] | ||
Lung diseases | Madecassoside | Activate PPARγ, generate HGF, impede pulmonary fibrosis | [187] |
Asiatic acid | Ameliorate lung fibrosis and inflammation | [190] | |
Inhibit TLR4 signaling pathway | [194] | ||
Activate Nrf2 and inhibit NLRP3 inflammasome pathway | [195] | ||
Suppress inflammatory mediators and induction of HO-1 | [196] | ||
Asiaticoside | Inhibiting inflammatory cell infiltration and downregulate the NF-κB signaling pathway | [193] | |
Kidney diseases | Madecassoside | Inhibit ERK phosphorylation, reduce apoptotic factors, inhibit iNOS | [201] |
Asiatic acid | Inhibits Smad3 signaling | [203] | |
Inhibit NF-κB activation and inflammatory responses | [204] | ||
Liver diseases | Madecassoside | Reduce inflammatory cytokines, increase antioxidant enzymes | [207] |
Asiatic acid | Regulate PI3K/AKT/mTOR and Bcl-2/Bax signaling pathways | [212] | |
Suppress NF-κB/IκBα and JAK1/STAT3 signaling | [213] | ||
Protect mitochondrial function | [216,217,218] | ||
Organ protective adjuvant | [219] | ||
Cancer | Madecassoside | Downregulate expression of COX-2 and PGE2 | [223] |
Asiaticoside | Autophagy induction, inhibit cell migration and invasion | [226] | |
Asiatic acid | Inhibit cancerous cell growth in glioblastoma | [232,234] | |
Reduce inflammation, cell proliferation and induce apoptosis in colon cancer | [236,237,239] | ||
Suppress PI3K/AKT/mTOR signaling | [241] | ||
Inhibits lung cancer cell growth | [243] | ||
Apoptosis of human leukemia cells | [246] | ||
Diabetes | Asiatic acid | Enhance glucose uptake into skeletal muscle | [253] |
Lower lipid and glucose levels | [254] | ||
Reduce islet fibrosis formation | [256] | ||
Protect against diabetic nephropathy | [260] | ||
Madecassic acid | Improve glycemic control, lower plasma lipids, attenuate oxidative and inflammatory stress | [257] | |
Reduce insulin resistance and endothelial dysfunction | [258] | ||
Asiaticoside | Protect cochlear hair cells | [261] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, S.C.; Bhattamisra, S.K.; Chellappan, D.K.; Candasamy, M. Actions and Therapeutic Potential of Madecassoside and Other Major Constituents of Centella asiatica: A Review. Appl. Sci. 2021, 11, 8475. https://doi.org/10.3390/app11188475
Tan SC, Bhattamisra SK, Chellappan DK, Candasamy M. Actions and Therapeutic Potential of Madecassoside and Other Major Constituents of Centella asiatica: A Review. Applied Sciences. 2021; 11(18):8475. https://doi.org/10.3390/app11188475
Chicago/Turabian StyleTan, Swee Ching, Subrat Kumar Bhattamisra, Dinesh Kumar Chellappan, and Mayuren Candasamy. 2021. "Actions and Therapeutic Potential of Madecassoside and Other Major Constituents of Centella asiatica: A Review" Applied Sciences 11, no. 18: 8475. https://doi.org/10.3390/app11188475
APA StyleTan, S. C., Bhattamisra, S. K., Chellappan, D. K., & Candasamy, M. (2021). Actions and Therapeutic Potential of Madecassoside and Other Major Constituents of Centella asiatica: A Review. Applied Sciences, 11(18), 8475. https://doi.org/10.3390/app11188475