Size-Segregated Particulate Mass and Carbonaceous Components in Roadside and Riverside Environments
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Site
2.1.1. Site for the Monitoring Campaign
2.1.2. Reference Site for Biomass Burning
2.2. Air Sampling
2.3. Traffic Density
2.4. Thermal-Optical Carbon Analysis
2.5. Backward Trajectory and Hotspots
3. Results and Discussion
3.1. Particle Mass Concentration
3.1.1. PM Mass Concentration
3.1.2. Influence of Location and Time Period on PM Concentration
3.2. Contribution of Local Emission Sources
3.2.1. Carbonaceous Parameters Sensitive to Vehicle Emission
3.2.2. Behavior of Carbonaceous Components in Size-Fractionated Particles
3.3. Local and Transboundary Influence of Open Biomass Burning
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thuy, N.T.T.; Dung, N.T.; Sekiguchi, K.; Thuy, L.B.; Hien, N.T.T.; Yamaguchi, R. Mass Concentrations and Carbonaceous Compositions of PM0.1, PM2.5, and PM10 at Urban Locations of Hanoi, Vietnam. Aerosol Air Qual. Res. 2018, 18, 1591–1605. [Google Scholar] [CrossRef] [Green Version]
- Phairuang, W.; Suwattiga, P.; Chetiyanukornkul, T.; Hongtieab, S.; Limpaseni, W.; Ikemori, F.; Hata, M.; Furuuchi, M. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environ. Pollut. 2019, 247, 238–247. [Google Scholar] [CrossRef]
- Phairuang, W.; Inerb, M.; Furuuchi, M.; Hata, M.; Tekasakul, S.; Tekasakul, P. Size-fractionated carbonaceous aerosols down to PM0.1 in southern Thailand: Local and long-range transport effects. Environ. Pollut. 2020, 260, 114031. [Google Scholar] [CrossRef]
- Fujii, Y.; Kawamoto, H.; Tohno, S.; Oda, M.; Iriana, W.; Lestari, P. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia (2): Identification of organic compounds. Atmos. Environ. 2015, 110, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Budisulistiorini, S.H.; Riva, M.; Williams, M.; Chen, J.; Itoh, M.; Surratt, J.D.; Kuwata, M. Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass. Environ. Sci. Technol. 2017, 51, 4415–4423. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M.; Franchini, M. Health Effects of Ambient Air Pollution in Developing Countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef] [PubMed]
- Doherty, R.M.; Heal, M.R.; O’Connor, F.M. Climate change impacts on human health over Europe through its effect on air quality. Environ. Health 2017, 16, 118. [Google Scholar] [CrossRef] [Green Version]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Slezakova, K.; Morais, S.; Pereir, M.D.C. Atmospheric Nanoparticles and Their Impacts on Public Health. In Current Topics in Public Health; InTech Open: London, UK, 2013; Volume 10, pp. 5772–5775. [Google Scholar] [CrossRef] [Green Version]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef]
- Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources—A review. Atmos. Environ. 2013, 67, 252–277. [Google Scholar] [CrossRef] [Green Version]
- De Jesus, A.L.; Rahman, M.; Mazaheri, M.; Thompson, M.; Knibbs, L.; Jeong, C.; Evans, G.; Nei, W.; Ding, A.; Qiao, L.; et al. Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int. 2019, 129, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Kusumaningtyas, S.D.A.; Aldrian, E. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 2016, 11, 075007. [Google Scholar] [CrossRef]
- Prasetyo, L.B.; Dharmawan, A.H.; Nasdian, F.T.; Ramdhoni, S. Historical Forest fire Occurrence Analysis in Jambi Province During the Period of 2000–2015: Its Distribution & Land Cover Trajectories. Procedia Environ. Sci. 2016, 33, 450–459. [Google Scholar] [CrossRef] [Green Version]
- Reddington, C.L.; Yoshioka, M.; Balasubramanian, R.; Ridley, D.; Toh, Y.Y.; Arnold, S.; Spracklen, D.V. Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia. Environ. Res. Lett. 2014, 9, 1748. [Google Scholar] [CrossRef] [Green Version]
- Purnomo, H.; Shantiko, B.; Sitorus, S.; Gunawan, H.; Achdiawan, R.; Kartodihardjo, H.; Dewayani, A.A. Fire economy and actor network of forest and land fires in Indonesia. For. Policy Econ. 2017, 78, 21–31. [Google Scholar] [CrossRef]
- World Bank Group. The Cost of Fire an Economic Analysis of Indonesia’s 2015 Fire Crisis; World Bank Group: Jakarta, Indonesia, 2016. [Google Scholar]
- Forsyth, T. Public concerns about transboundary haze: A comparison of Indonesia, Singapore, and Malaysia. Glob. Environ. Chang. 2014, 25, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Othman, J.; Sahani, M.; Mahmud, M.; Ahmad, K.S. Transboundary smoke haze pollution in Malaysia: Inpatient health impacts and economic valuation. Environ. Pollut. 2014, 189, 194–201. [Google Scholar] [CrossRef]
- Marlier, M.; DeFries, R.S.; Kim, P.S.; Koplitz, S.; Jacob, D.J.; Mickley, L.J.; Myers, S.S. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Kim, Y.; Knowles, S.; Manley, J.; Radoias, V. Long-run health consequences of air pollution: Evidence from Indonesia’s forest fires of 1997. Econ. Hum. Biol. 2017, 26, 186–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwata, M.; Neelam-Naganathan, G.-G.; Miyakawa, T.; Khan, F.; Kozan, O.; Kawasaki, M.; Sumin, S.; Latif, M.T. Constraining the Emission of Particulate Matter from Indonesian Peatland Burning Using Continuous Observation Data. J. Geophys. Res. Atmos. 2018, 123, 9828–9842. [Google Scholar] [CrossRef]
- Kunii, O.; Kanagawa, S.; Yajima, I.; Hisamatsu, Y.; Yamamura, S.; Amagai, T.; Ismail, I.T.S. The 1997 Haze Disaster in Indonesia: Its Air Quality and Health Effects. Arch. Environ. Health Int. J. 2002, 57, 16–22. [Google Scholar] [CrossRef]
- Anwar, A.; Juneng, L.; Othman, M.R.; Latif, M.T. Correlation between hotspots and air quality in Pekanbaru, Riau, Indonesia in 2006–2007. Sains Malays. 2010, 39, 169–174. [Google Scholar]
- Handika, R.; Lestari, R.; Saputra, R. Comparing contributors and PM10 dispersion around Tugu Juang and in governor office area of Jambi City, Indonesia. IOP Conf. Series Earth Environ. Sci. 2019, 391, 1088–1755. [Google Scholar] [CrossRef]
- Putri, R.M.; Amin, M.; Suciari, T.F.; Faisal, M.A.F.; Auliani, R.; Ikemori, F.; Wada, M.; Hata, M.; Tekasakul, P.; Furuuchi, M. Site-specific variation in mass concentration and chemical components in ambient nanoparticles (PM0.1) in North Sumatra Province-Indonesia. Atmos. Pollut. Res. 2021, 12, 101062. [Google Scholar] [CrossRef]
- Badan Pusat Statistik (BPS-Statistics of Jambi). Jambi Province in Figure; BPS: Jambi, Indonesia, 2021. [Google Scholar]
- He, Y.; Gu, Z.; Lu, W.; Zhang, L.; Okuda, T.; Fujioka, K.; Luo, H.; Yu, C.W. Atmospheric humidity and particle charging state on agglomeration of aerosol particles. Atmos. Environ. 2019, 197, 141–149. [Google Scholar] [CrossRef]
- Dennis, R.A. A Review of Fire Projects in Indonesia, 1982–1998; CIFOR: Bogor, Indonesia, 1999; p. 105. [Google Scholar]
- Direktorat PKHL Kementrian Lingkungan Hidup Dan Kehutanan RI. Rekapitulasi Luas Kebakaran Hutan dan Lahan (Ha) Per Provinsi Di Indonesia Tahun 2016–2020; KLHK: Jakarta, Indonesia, 2020; Available online: sipongi.menlhk.go.id (accessed on 1 April 2021).
- Zarmaili, Z. Evaluasi Transportasi Sungai Di Kabupaten Tanjung Jabung Timur Provinsi Jambi. War. Penelit. Perhub. 2019, 27, 117. [Google Scholar] [CrossRef] [Green Version]
- Nurmalia, W. Pemanfaatan Modal Sosial Sebagai Strategi Bertahan Hidup Komunitas Terdampak Pembangunan: Studi Penarik Ketek Terdampak Pembangunan Jembatan di Kecamatan Pelayangan Kota Jambi. Master’s Thesis, Universitas Andalas, West Sumatra, Indonesia, 2017. (In Bahasa). [Google Scholar]
- Furuuchi, M.; Eryu, K.; Nagura, M.; Hata, M.; Kato, T.; Tajima, N.; Sekiguchi, K.; Ehara, K.; Seto, T.; Otani, Y. Development and Performance Evaluation of Air Sampler with Inertial Filter for Nanoparticle Sampling. Aerosol Air Qual. Res. 2010, 10, 185–192. [Google Scholar] [CrossRef]
- Kumsanlas, N.; Piriyakarnsakul, S.; Sok, P.; Hongtieab, S.; Ikemori, F.; Szymanski, W.W.; Hata, M.; Otani, Y.; Furuuchi, M. A Cascade Air Sampler with Multi-nozzle Inertial Filters for PM0.1. Aerosol Air Qual. Res. 2019, 19, 1666–1677. [Google Scholar] [CrossRef]
- MOEJ (Ministry of Environment of Japan). Chapter 4. Carbonaceous Component Analysis Method 483 (Thermal Optical Reflectance Method). In Fine Particles (PM2.5) Component 484 Measurement Manual, 3rd ed.; 2019; Available online: https://www.env.go.jp/air/osen/pm/ca/manual.html (accessed on 17 August 2020). (In Japanese)
- Otani, Y.; Eryu, K.; Furuuchi, M.; Tajima, N.; Tekasakul, P. Inertial Classification of Nanoparticles with Fibrous Filters. Aerosol Air Qual. Res. 2007, 7, 343–352. [Google Scholar] [CrossRef]
- Han, Y.; Cao, J.; Chow, J.C.; Watson, J.; An, Z.; Jin, Z.; Fung, K.; Liu, S. Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC. Chemosphere 2007, 69, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Sekiguchi, K.; Furuuchi, M.; Sakamoto, K. Seasonal variation of carbonaceous and ionic components in ultrafine and fine particles in an urban area of Japan. Atmos. Environ. 2011, 45, 1581–1590. [Google Scholar] [CrossRef]
- Kim, K.H.; Sekiguchi, K.; Kudo, S.; Sakamoto, K. Characteristics of Atmospheric Elemental Carbon (Char and Soot) in Ultrafine and Fine Particles in a Roadside Environment, Japan. Aerosol Air Qual. Res. 2011, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Lee, S.-C.; Cao, J.; Ho, K.F.; An, Z. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmos. Environ. 2009, 43, 6066–6073. [Google Scholar] [CrossRef]
- Air Resource Laboratory (ALR). The Air Resource Laboratory (HYSPLIP 4). 2019. Available online: http://ready.arl.noaa.gov/HYSPLIT.php (accessed on 10 August 2019).
- Budiwati, T.; Setyawati, W.; Tanti, D.A. Chemical Characteristics of Rainwater in Sumatera, Indonesia, during 2001–2010. Int. J. Atmos. Sci. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Murao, N. Air Quality Model—6. Trajectory Analysis. J. Soc. Atmos. Environ. Japan 2011, 46, A61–A67. [Google Scholar]
- FIRMS. 2019. Available online: https://firms.modaps.eosdis.nasa.gov/download/list.php (accessed on 15 August 2019).
- Hongtieab, S.; Yoshikawa, F.; Matsuki, A.; Zhao, T.; Amin, M.; Hata, M.; Tekasakul, P.; Furuuchi, M. Seasonal Behavior and Emission Sources of Ambient PM0.1 in the Hokuriku Region in Japan. Japan Sea Res. 2020, 51, 1–17. [Google Scholar]
- Boongla, Y.; Chanonmuang, P.; Hata, M.; Furuuchi, M.; Phairuang, W. The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand. Environ. Pollut. 2021, 272, 115940. [Google Scholar] [CrossRef] [PubMed]
- Peraturan Pemerintah (PP) RI/No. 22. Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup; JDIH: Jakarta, Indonesia, 2021. (In Bahasa) [Google Scholar]
- Du, C.; Liu, S.; Yu, X.; Li, X.; Chen, C.; Peng, Y.; Dong, Y.; Dong, Z.; Wang, F. Urban Boundary Layer Height Characteristics and Relationship with Particulate Matter Mass Concentrations in Xi’an, Central China. Aerosol Air Qual. Res. 2013, 13, 1598–1607. [Google Scholar] [CrossRef]
- Pandolfi, M.; Tobias, A.; Alastuey, A.; Sunyer, J.; Schwartz, J.; Lorente, J.; Pey, J.; Querol, X. Effect of atmospheric mixing layer depth variations on urban air quality and daily mortality during Saharan dust outbreaks. Sci. Total Environ. 2014, 494–495, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Luan, T.; Guo, X.; Guo, L.; Zhang, T. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmos. Chem. Phys. Discuss. 2018, 18, 203–225. [Google Scholar] [CrossRef] [Green Version]
- Solanki, R.; Macatangay, R.; Sakulsupich, V.; Sonkaew, T.; Mahapatra, P.S. Mixing Layer Height Retrievals from MiniMPL Measurements in the Chiang Mai Valley: Implications for Particulate Matter Pollution. Front. Earth Sci. 2019, 7, 308. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Zhao, C.; Zhang, M.; Dong, X.; Chen, Y.; Liu, Z.; Hu, Z.; Zhang, Q.; Li, Y.; Yuan, R.; et al. Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: Impacts from boundary-layer mixing and anthropogenic emission. Atmos. Chem. Phys. Discuss. 2020, 20, 2839–2863. [Google Scholar] [CrossRef] [Green Version]
- Kuuluvainen, H.; Karjalainen, P.; Saukko, E.; Ovaska, T.; Sirviö, K.; Honkanen, M.; Olin, M.; Niemi, S.; Keskinen, J.; Rönkkö, T. Nonvolatile ultrafine particles observed to form trimodal size distributions in non-road diesel engine exhaust. Aerosol Sci. Technol. 2020, 54, 1345–1358. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Aatmeeyata; Sharma, M. Polycyclic aromatic hydrocarbons, elemental and organic carbon emissions from tire-wear. Sci. Total Environ. 2010, 408, 4563–4568. [Google Scholar] [CrossRef] [PubMed]
- Padoan, E.; Rome, C.; Ajmone-Marsan, F. Bio accessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci. Total Environ. 2017, 601–602, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, E.; Jarosz-Krzeminska, E. Human health risk assessment associated with contaminants in the finest fraction of sidewalk dust collected in proximity to trafficked roads. Sci. Rep. 2019, 9, 16364. [Google Scholar] [CrossRef]
- Roy, S.; Gupta, S.K.; Prakash, J.; Habib, G.; Baudh, K.; Nasr, M. Ecological and human health risk assessment of heavy metal contamination in road dust in the National Capital Territory (NCT) of Delhi, India. Environ. Sci. Pollut. Res. Int. 2019, 26, 30413–30425. [Google Scholar] [CrossRef]
- Kim, K.H.; Woo, S.H.; Lee, S.-B.; Bae, G.-N.; Sekiguchi, K.; Kobayashi, R.; Kamiyama, M. Carbonaceous Components in PM2.5 and PM0.1 with Online Measurements of Gaseous and Particulate Pollutants: Implication of Thermal-Optical Derived EC2 Fraction as a Component of Ultrafine Particles in the Roadside Environment. Aerosol Air Qual. Res. 2016, 16, 361–372. [Google Scholar] [CrossRef] [Green Version]
Size | Roadside | Riverside | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diurnal (μg/m3) | Nocturnal (μg/m3) | Daily (μg/m3) | D/N (-) | Diurnal (μg/m3) | Nocturnal (μg/m3) | Daily (μg/m3) | D/N (-) | |||||||||
Mean | Min | Max | Mean | Min | Max | Mean | Mean | Mean | Min | Max | Mean | Min | Max | Mean | Mean | |
<0.1 | 14.0 ±1.6 | 11.7 | 16.2 | 24.7 ±2.9 | 21.5 | 29.2 | 19.4 ±2.2 | 0.57 ±0.05 | 10.6 ±3.1 | 6.7 | 14.1 | 15.2 ±3.8 | 12.1 | 22.4 | 12.9 ±3.4 | 0.72 ±0.22 |
0.1–0.5 | 11.1 ±1.5 | 9.3 | 13.4 | 14.4 ±3.4 | 10.0 | 21.3 | 12.7 ±2.5 | 0.80 ±0.15 | 8.0 ±0.5 | 7.4 | 8.5 | 11.3 ±3.0 | 8.4 | 16.5 | 9.7 ±1.8 | 0.74 ±0.16 |
0.5–1.0 | 16.9 ±2.5 | 14.4 | 21.8 | 33.2 ±3.1 | 28.5 | 37.0 | 25.0 ±2.8 | 0.51 ±0.09 | 13.4 ±5.2 | 7.7 | 19.6 | 20.9 ±5.3 | 15.0 | 31.0 | 17.1 ±5.2 | 0.64 ±0.22 |
1.0–2.5 | 16.5 ±2.3 | 13.3 | 20.4 | 27.1 ±5.8 | 18.0 | 32.4 | 21.8 ±4.0 | 0.63 ±0.14 | 10.0 ±5.6 | 5.2 | 20.9 | 16.7 ±4.8 | 12.3 | 25.9 | 13.3 ±5.2 | 0.57 ±0.15 |
2.5–10 | 26.4 ±4.4 | 17.7 | 31.3 | 39.5 ±2.3 | 36.0 | 43.5 | 32.9 ±3.4 | 0.67 ±0.09 | 15.2 ±5.8 | 9.8 | 25.3 | 17.4 ±3.0 | 14.2 | 22.6 | 16.3 ±4.4 | 0.85 ±0.18 |
>10 | 15.2 ±1.4 | 12.9 | 17.1 | 24.0 ±2.8 | 21.5 | 28.3 | 19.6 ±2.1 | 0.65 ±0.12 | 9.8 ±5.4 | 3.3 | 16.7 | 6.6 ±1.3 | 4.6 | 8.3 | 8.2 ±3.4 | 1.48 ±1.17 |
PM (μg/m3) | ||||||||||||||||
PM0.1 | 14.0 ±1.6 | 11.7 | 16.2 | 24.7 ±2.9 | 21.5 | 29.2 | 19.4 ±2.2 | 0.57 ±0.05 | 10.6 ±3.1 | 6.7 | 14.1 | 15.2 ±3.8 | 12.1 | 22.4 | 12.9 ±3.4 | 0.72 ±0.22 |
PM1 | 42.1 ±3.4 | 36.3 | 45.9 | 72.2 ±8.2 | 61.0 | 85.9 | 57.2 ±5.8 | 0.59 ±0.06 | 32.0 ±6.6 | 24.5 | 39.7 | 47.4 ±11.9 | 35.9 | 69.8 | 39.7 ±9.2 | 0.69 ±0.13 |
PM2.5 | 58.6 ±5.3 | 49.6 | 64.2 | 99.3 ±13.2 | 81.1 | 118.3 | 79.0 ±9.2 | 0.60 ±0.07 | 42.0 ±11.1 | 30.4 | 58.9 | 64.1 ±16.6 | 48.2 | 95.7 | 53.0 ±13.9 | 0.66 ±0.11 |
PM10 | 85.0 ±8.8 | 67.3 | 92.1 | 138.8 ±13.2 | 117.1 | 157.5 | 111.9 ±11.0 | 0.61 ±0.06 | 57.2 ±16.0 | 40.3 | 84.2 | 81.5 ±19.3 | 62.4 | 118.3 | 69.3 ±17.7 | 0.70 ±0.10 |
TSP | 100.3 ±9.1 | 82.0 | 108.5 | 162.6 ±13.5 | 141.2 | 179.1 | 131.5 ±11.1 | 0.62 ±0.05 | 65.9 ±21.2 | 43.9 | 100.9 | 87.8 ±18.9 | 68.0 | 122.9 | 76.8 ±20.1 | 0.74 ±0.14 |
PM0.1 fraction in TSP (%) | ||||||||||||||||
(This study) | 0.17 ±0.02 | 0.13 | 0.18 | 0.18 ±0.01 | 0.17 | 0.19 | 0.17 ±0.01 | 0.92 ±0.08 | 0.19 ±0.04 | 0.12 | 0.25 | 0.19 ±0.01 | 0.17 | 0.19 | 0.19 ±0.03 | 0.97 ±0.24 |
Sampling Site | OC (μg/m3) | EC (μg/m3) | TC (μg/m3) | OC/EC (-) | Char-EC (μg/m3) | Soot-EC (μg/m3) | Soot-EC /PM (-) | Char/Soot-EC (-) | TC/PM (-) |
---|---|---|---|---|---|---|---|---|---|
<0.1 μm | |||||||||
Diurnal (D) and nocturnal (N) | |||||||||
RSD | 4.71 ±0.83 | 1.56 ±0.35 | 6.25 ±0.82 | 3.27 ±1.15 | 0.49 ±0.27 | 1.04 ±0.17 | 0.08 ±0.02 | 0.48 ±0.25 | 0.45 ±0.07 |
RSN | 4.64 ±1.31 | 1.90 ±0.34 | 6.54 ±1.58 | 2.43 ±0.47 | 0.74± 0.21 | 1.16 ±0.23 | 0.05 ±0.01 | 0.65 ±0.20 | 0.26 ±0.05 |
RVD | 3.61 ±0.34 | 1.31 ±0.20 | 4.91 ±0.48 | 2.81 ±0.41 | 0.62 ±0.11 | 0.69 ±0.11 | 0.07 ±0.03 | 0.90 ±0.10 | 0.51 ±0.20 |
RVN | 6.41 ±2.10 | 1.90 ±0.24 | 8.31 ±2.30 | 3.32 ±0.74 | 0.77 ±0.09 | 1.13 ±0.24 | 0.08 ±0.01 | 0.71 ±0.17 | 0.54 ±0.04 |
Daily | |||||||||
RS | 4.68 ±1.07 | 1.72 ±0.34 | 6.39 ±1.20 | 2.85 ±0.81 | 0.62 ±0.24 | 1.10 ±0.20 | 0.06 ±0.02 | 0.56 ±0.23 | 0.36 ±0.06 |
RV | 5.01 ±1.22 | 1.60 ±0.22 | 6.61 ±1.39 | 3.06 ±0.57 | 0.70 ±0.10 | 0.91 ±0.17 | 0.07 ±0.01 | 0.81 ±0.14 | 0.53 ±0.12 |
0.5–1 μm | |||||||||
Diurnal (D) and nocturnal (N) | |||||||||
RSD | 4.56 ±1.07 | 2.82 ±1.74 | 7.38 ±2.71 | 1.90 ±0.68 | 2.03 ±1.39 | 0.79 ±0.38 | 0.05 ±0.03 | 2.48 ±0.93 | 0.45 ±0.20 |
RSN | 8.38 ±2.67 | 1.58 ±0.38 | 9.96 ±2.60 | 5.66 ±2.52 | 0.66 ±0.31 | 1.03 ±0.23 | 0.03 ±0.01 | 0.57 ±0.39 | 0.30 ±0.06 |
RVD | 6.28 ±4.48 | 1.81 ±1.27 | 8.09 ±4.97 | 5.46 ±4.40 | 0.89 ±1.12 | 0.92 ±0.62 | 0.07 ±0.04 | 1.22 ±1.69 | 0.62 ±0.27 |
RVN | 8.30 ±3.50 | 0.98 ±0.61 | 9.27 ±3.87 | 7.67 ±2.57 | 0.24 ±0.61 | 0.73 ±0.26 | 0.04 ±0.01 | 0.49 ±1.36 | 0.43 ±0.06 |
Daily | |||||||||
RS | 6.47 ±1.87 | 2.20 ±1.06 | 8.67 ±2.66 | 3.78 ±1.60 | 1.35 ±0.85 | 0.91 ±0.30 | 0.04 ±0.02 | 1.52 ±0.66 | 0.37 ±0.13 |
RV | 7.29 ±3.99 | 1.39 ±0.94 | 8.68 ±4.42 | 6.57 ±3.48 | 0.57 ±0.87 | 0.83 ±0.44 | 0.05 ±0.02 | 0.86 ±1.52 | 0.52 ±0.17 |
1–2.5 μm | |||||||||
Diurnal (D) and nocturnal (N) | |||||||||
RSD | 4.21 ±2.46 | 1.92 ±1.69 | 6.13 ±4.01 | 2.99 ±2.19 | 1.10 ±0.96 | 0.82 ±0.76 | 0.05 ±0.05 | 1.40 ±0.71 | 0.38 ±0.27 |
RSN | 6.53 ±3.23 | 2.04 ±0.84 | 8.57 ±3.34 | 3.88 ±3.19 | 1.16 ±0.67 | 0.88 ±0.46 | 0.04 ±0.03 | 1.57 ±1.01 | 0.33 ±0.19 |
RVD | 2.73 ±0.91 | 1.11 ±0.58 | 3.84 ±1.34 | 3.58 ±3.62 | 0.74 ±0.43 | 0.37 ±0.18 | 0.05 ±0.04 | 2.01 ±1.04 | 0.51 ±0.36 |
RVN | 9.75 ±4.89 | 1.95 ±1.43 | 11.70 ±5.96 | 5.95 ±3.48 | 1.13 ±0.99 | 0.82 ±0.55 | 0.05 ±0.05 | 1.56 ±1.03 | 0.75 ±0.51 |
Daily | |||||||||
RS | 5.37 ±2.85 | 1.98 ±1.27 | 7.35 ±3.67 | 3.43 ±2.69 | 1.13 ±0.82 | 0.85 ±0.61 | 0.04 ±0.04 | 1.49 ±0.86 | 0.36 ±0.23 |
RV | 6.24 ±2.90 | 1.53 ±1.00 | 7.77 ±3.65 | 4.77 ±3.55 | 0.93 ±0.71 | 0.59 ±0.36 | 0.05 ±0.04 | 1.79 ±1.03 | 0.63 ±0.44 |
2.5–10 μm | |||||||||
Diurnal (D) and nocturnal (N) | |||||||||
RSD | 2.75 ±0.73 | 1.58 ±0.32 | 4.33 ±0.73 | 1.81 ±0.63 | 1.01 ±0.31 | 0.57 ±0.07 | 0.02 ±0.00 | 1.79 ±0.57 | 0.17 ±0.03 |
RSN | 9.69 ±11.4 | 3.95 ±4.47 | 13.6 ±15.8 | 2.80 ±1.57 | 2.13 ±2.48 | 1.82 ±2.11 | 0.02 ±0.02 | 1.33 ±0.84 | 0.35 ±0.41 |
RVD | 1.72 ±0.57 | 0.65 ±0.17 | 2.37 ±0.73 | 2.64 ±0.40 | 0.48 ±0.12 | 0.17 ±0.06 | 0.01 ±0.00 | 3.21 ±1.08 | 0.17 ±0.05 |
RVN | 3.39 ±1.37 | 0.82 ±0.29 | 4.21 ±1.14 | 5.23 ±4.54 | 0.58 ±0.33 | 0.24 ±0.06 | 0.01 ±0.01 | 2.74 ±2.01 | 0.20 ±0.10 |
Daily | |||||||||
RS | 6.22 ±6.08 | 2.76 ±2.39 | 8.98 ±8.25 | 2.31 ±1.10 | 1.57 ±1.40 | 1.20 ±1.09 | 0.02 ±0.01 | 1.56 ±0.70 | 0.26 ±0.22 |
RV | 2.55 ±0.97 | 0.73 ±0.23 | 3.29 ±0.94 | 3.94 ±2.47 | 0.53 ±0.22 | 0.20 ±0.06 | 0.01 ±0.00 | 2.98 ±1.54 | 0.18 ±0.07 |
>10 μm | |||||||||
Diurnal (D) and nocturnal (N) | |||||||||
RSD | 1.54 ±1.93 | 0.84 ±0.99 | 2.38 ±2.91 | 1.77 ±0.24 | 0.43 ±0.40 | 0.42 ±0.59 | 0.03 ±0.04 | 1.35 ±0.39 | 0.15 ±0.17 |
RSN | 1.34 ±0.69 | 0.79 ±0.47 | 2.13 ±1.14 | 1.95 ±1.02 | 0.42 ±0.28 | 0.37 ±0.20 | 0.02 ±0.01 | 1.10 ±0.47 | 0.09 ±0.05 |
RVD | 0.86 ±1.50 | 0.21 ±0.42 | 1.06 ±1.90 | 5.23 ±3.60 | 0.11 ±0.30 | 0.09 ±0.13 | 0.01 ±0.01 | 1.15 ±0.89 | 0.14 ±0.13 |
RVN | 0.92 ±0.59 | 0.26 ±0.23 | 1.17 ±0.81 | 9.70 ±14.6 | 0.16 ±0.16 | 0.10 ±0.08 | 0.01 ±0.01 | 1.44 ±1.28 | 0.18 ±0.10 |
Daily | |||||||||
RS | 1.44 ±1.31 | 0.82 ±0.73 | 2.26 ±2.03 | 1.86 ±0.63 | 0.42 ±0.34 | 0.39 ±0.40 | 0.02 ±0.03 | 1.23 ±0.43 | 0.12 ±0.11 |
RV | 0.89 ±1.04 | 0.23 ±0.33 | 1.12 ±1.36 | 7.47 ±9.09 | 0.14 ±0.23 | 0.10 ±0.10 | 0.01 ±0.01 | 1.29 ±1.09 | 0.16 ±0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.; Handika, R.A.; Putri, R.M.; Phairuang, W.; Hata, M.; Tekasakul, P.; Furuuchi, M. Size-Segregated Particulate Mass and Carbonaceous Components in Roadside and Riverside Environments. Appl. Sci. 2021, 11, 10214. https://doi.org/10.3390/app112110214
Amin M, Handika RA, Putri RM, Phairuang W, Hata M, Tekasakul P, Furuuchi M. Size-Segregated Particulate Mass and Carbonaceous Components in Roadside and Riverside Environments. Applied Sciences. 2021; 11(21):10214. https://doi.org/10.3390/app112110214
Chicago/Turabian StyleAmin, Muhammad, Rizki Andre Handika, Rahmi Mulia Putri, Worradorn Phairuang, Mitsuhiko Hata, Perapong Tekasakul, and Masami Furuuchi. 2021. "Size-Segregated Particulate Mass and Carbonaceous Components in Roadside and Riverside Environments" Applied Sciences 11, no. 21: 10214. https://doi.org/10.3390/app112110214
APA StyleAmin, M., Handika, R. A., Putri, R. M., Phairuang, W., Hata, M., Tekasakul, P., & Furuuchi, M. (2021). Size-Segregated Particulate Mass and Carbonaceous Components in Roadside and Riverside Environments. Applied Sciences, 11(21), 10214. https://doi.org/10.3390/app112110214