Studies of the Variability of Sugars, Vitamin C, and Chlorophylls in Differently Fermented Organic Leaves of Willowherb (Chamerion angustifolium (L.) Holub)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Willowherb Leaves Samples
2.2. Willowherb Leaves Preparation
- Control—unfermented (NF): 0.900 kg.
- Aerobic solid-phase fermentation (AEF): 2.7 kg for all the three SPF duration conditions lasting 24, 48, and 72 h.
- Anaerobic solid-phase fermentation (ANEF): 2.7 kg for all the three SPF duration conditions lasting 24, 48, and 72 h.
2.3. Vitamin C Analysis
2.4. Sugar Analysis
2.5. Chlorophylls Analysis
2.6. Statistical and Multivariate Analysis
3. Results
3.1. The Amounts of Biologically Active Compounds
3.2. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ponder, A.; Hallmann, E. Phenolics and carotenoid contents in the leaves of different organic and conventional raspberry (Rubus idaeus L.) cultivars and their in vitro activity. Antioxidants 2019, 8, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallmann, E.; Rozpara, E.; Słowianek, M.; Leszczyńska, J. The effect of organic and conventional farm management on the allergenic potency and bioactive compounds status of apricots (Prunus armeriaca L.). Food Chem. 2019, 279, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Lasinskas, M.; Jariene, E. Applications of the narrow-leaved fireweed (Chamerion angustifolium L.): A review of research. Agric. Sci. 2018, 25, 125–130. [Google Scholar]
- Schepetkin, I.A.; Ramstead, A.G.; Kirpotina, L.N.; Voyich, J.M.; Jutila, M.A.; Quinn, M.T. Therapeutic potential of polyphenols from Epilobium angustifolium (Fireweed). Phytother. Res. 2016, 30, 1287–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, K.; Manohar, P.; Kavita, Y.A. Review on phytopharmacopial potential of Epilobium angustifolium. Pharm. J. 2018, 10, 1076–1078. [Google Scholar]
- Lasinskas, M.; Jariene, E. The content of phenolic acids in the different duration fermented leaves of fireweed (Chamerion angustifolium (L.) Holub). Agric. Sci. 2019, 26, 111–115. [Google Scholar] [CrossRef]
- Lasinskas, M.; Jariene, E.; Vaitkeviciene, N.; Hallmann, E.; Najman, K. Effect of different durations of solid-phase fermentation for fireweed (Chamerion angustifolium (L.) Holub) leaves on the content of polyphenols and antioxidant activity in vitro. Molecules 2020, 25, 1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponder, A.; Hallmann, E. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. J. Food Compos. Analysis 2020, 87, 103429. [Google Scholar] [CrossRef]
- Lasinskas, M.; Jariene, E.; Vaitkeviciene, N.; Kulaitiene, J.; Najman, K.; Hallmann, E. Studies of the variability of polyphenols and carotenoids in different methods fermented organic leaves of willowherb (Chamerion angustifolium (L.) Holub). Appl. Sci. 2020, 10, 5254. [Google Scholar] [CrossRef]
- Jariene, E.; Lasinskas, M.; Danilcenko, H.; Vaitkeviciene, N.; Slepetiene, A.; Najman, K.; Hallmann, E. Polyphenols, Antioxidant Activity and Volatile Compounds in Fermented Leaves of Medicinal Plant Rosebay Willowherb (Chamerion angustifolium (L.) Holub). Plants 2020, 9, 1683. [Google Scholar] [CrossRef] [PubMed]
- Couto, S.R.; Sanroman, A. Application of solid-phase fermentation to food industry: A review. J. Food Eng. 2006, 76, 291–302. [Google Scholar] [CrossRef]
- Tveden-Nyborg, P.; Lykkesfeldt, J. Does vitamin C deficiency increase lifestyle-associated vascular disease progression? Evidence based on experimental and clinical studies. Antiox. Redox Signal. 2013, 19, 2084–2104. [Google Scholar] [CrossRef] [PubMed]
- Frei, B.; Birlouez-Aragon, I.; Lykkesfeldt, J. Authors’ perspective: What is the optimum intake of vitamin C in humans? Crit. Rev. Food Sci. Nutr. 2012, 52, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.C.M.; Das, A.B. Potential mechanisms of action for vitamin C in cancer: Reviewing the evidence. Front. Physiol. 2018, 9, 809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traber, M.G.; Buettner, G.R.; Bruno, R.S. The relationship between vitamin C status, the gut-liver axis, and metabolic syndrome. Redox Biol. 2019, 21, 101091. [Google Scholar] [CrossRef] [PubMed]
- Aarti, P.D.; Tanaka, R.; Tanaka, A. Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Phys. Plant. 2006, 128, 186–197. [Google Scholar] [CrossRef]
- Liu, M.H.; Li, Y.F.; Chen, B.H. Preparation of chlorophyll nanoemulsion from pomelo leaves and its inhibition effect on melanoma cells A375. Plants 2021, 10, 1664. [Google Scholar] [CrossRef] [PubMed]
- Santra, K.; Song, A.; Petrich, J.W.; Rasmussen, M.A. The degradation of chlorophyll pigments in dairy silage: The timeline of anaerobic fermentation. J. Sci. Food Agric. 2021, 101, 2863–2868. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Seo, H.S.; Singh, D.; Lee, S.J.; Lee, C.H. Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng. J. Ginseng Res. 2020, 44, 413–423. [Google Scholar] [CrossRef] [PubMed]
Fermentation Method | Fermentation Duration | Vitamin C | Dehydroascorbic Acid | L-ascorbic Acid |
---|---|---|---|---|
mg 100 g−1 DW | ||||
Control (unfermented leaves) | 678.35 ± 11.16 a 1 | 179.91 ± 12.96 a | 496.44 ± 21.61 a | |
Aerobic | 24 h | 404.32 ± 30.07 b | 200.11 ± 39.30 a | 204.20 ± 2.32 b |
Aerobic | 48 h | 268.47 ± 9.55 de | 135.67 ± 12.37 b | 132.80 ± 19.38 d |
Aerobic | 72 h | 241.35 ± 5.91 e | 135.45 ± 1.56 b | 105.89 ± 4.53 e |
Anaerobic | 24 h | 357.16 ± 19.14 c | 189.69 ± 7.52 a | 167.47 ± 14.54 c |
Anaerobic | 48 h | 287.18 ± 22.80 d | 135.31 ± 28.14 b | 151.87 ± 5.72 cd |
Anaerobic | 72 h | 342.80 ± 5.33 c | 193.39 ± 1.60 a | 149.41 ± 4.97 cd |
p-values (fermentation method × fermentation duration) | <0.0001 | <0.0039 | <0.0003 |
Fermentation Method | Fermentation Duration | Total Chlorophyll | Chlorophyll a | Chlorophyll b |
---|---|---|---|---|
mg 100 g−1 DW | ||||
Control (unfermented leaves) | 474.52 ± 32.80 b 1 | 220.29 ± 0.55 d | 254.23 ± 32.45 a | |
Aerobic | 24 h | 379.16 ± 28.30 c | 164.49 ± 1.58 e | 214.66 ± 27.83 a |
Aerobic | 48 h | 472.33 ± 26.15 b | 364.91 ± 29.56 b | 107.42 ± 3.65 b |
Aerobic | 72 h | 449.48 ± 5.30 b | 342.99 ± 5.67 c | 106.49 ± 3.04 b |
Anaerobic | 24 h | 448.87 ± 68.93 b | 340.32 ± 3.98 c | 108.55 ± 65.04 b |
Anaerobic | 48 h | 447.38 ± 4.62 b | 334.86 ± 4.86 c | 112.50 ± 1.61 b |
Anaerobic | 72 h | 610.03 ± 2.77 a | 503.50 ± 3.26 a | 106.53 ± 3.96 b |
p-values (fermentation method × fermentation duration) | <0.0008 | <0.0001 | <0.0087 |
Fermentation Method | Fermentation Duration | Total Sugars | Fructose | Glucose | Sucrose |
---|---|---|---|---|---|
g 100 g−1 DW | |||||
Control (unfermented leaves) | 5.30 ± 0.03 c 1 | 1.42 ± 0.04 e | 1.26 ± 0.02 d | 2.62 ± 0.06 a | |
Aerobic | 24 h | 5.53 ± 0.21 c | 1.75 ± 0.09 c | 2.18 ± 0.11 c | 1.59 ± 0.05 c |
Aerobic | 48 h | 3.03 ± 0.04 d | 0.83 ± 0.00 f | 0.86 ± 0.00 e | 1.34 ± 0.04 d |
Aerobic | 72 h | 2.79 ± 0.04 d | 0.75 ± 0.00 f | 0.83 ± 0.00 e | 1.21 ± 0.04 e |
Anaerobic | 24 h | 6.24 ± 0.08 b | 2.15 ± 0.02 b | 2.78 ± 0.05 b | 1.32 ± 0.04 d |
Anaerobic | 48 h | 5.46 ± 0.07 c | 1.59 ± 0.02 d | 2.10 ± 0.04 c | 1.77 ± 0.09 b |
Anaerobic | 72 h | 8.06 ± 0.27 a | 2.66 ± 0.10 a | 3.58 ± 0.10 a | 1.82 ± 0.07 b |
p-values (fermentation method × fermentation duration) | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasinskas, M.; Jariene, E.; Vaitkeviciene, N.; Blinstrubiene, A.; Sawicka, B.; Sadowska, A.; Hallmann, E. Studies of the Variability of Sugars, Vitamin C, and Chlorophylls in Differently Fermented Organic Leaves of Willowherb (Chamerion angustifolium (L.) Holub). Appl. Sci. 2021, 11, 9891. https://doi.org/10.3390/app11219891
Lasinskas M, Jariene E, Vaitkeviciene N, Blinstrubiene A, Sawicka B, Sadowska A, Hallmann E. Studies of the Variability of Sugars, Vitamin C, and Chlorophylls in Differently Fermented Organic Leaves of Willowherb (Chamerion angustifolium (L.) Holub). Applied Sciences. 2021; 11(21):9891. https://doi.org/10.3390/app11219891
Chicago/Turabian StyleLasinskas, Marius, Elvyra Jariene, Nijole Vaitkeviciene, Ausra Blinstrubiene, Barbara Sawicka, Anna Sadowska, and Ewelina Hallmann. 2021. "Studies of the Variability of Sugars, Vitamin C, and Chlorophylls in Differently Fermented Organic Leaves of Willowherb (Chamerion angustifolium (L.) Holub)" Applied Sciences 11, no. 21: 9891. https://doi.org/10.3390/app11219891
APA StyleLasinskas, M., Jariene, E., Vaitkeviciene, N., Blinstrubiene, A., Sawicka, B., Sadowska, A., & Hallmann, E. (2021). Studies of the Variability of Sugars, Vitamin C, and Chlorophylls in Differently Fermented Organic Leaves of Willowherb (Chamerion angustifolium (L.) Holub). Applied Sciences, 11(21), 9891. https://doi.org/10.3390/app11219891