Feasibility of a Reusable Radiochromic Dosimeter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Irradiation/Scanning of the Formulated Cuvettes
2.3. Dosimetric Evaluations
3. Results
3.1. Linearity of First Irradiation Response
3.2. Temporal Characteristics
3.3. Reusability (Multiple Irradiations) Linearity and Dose Sensitivity
4. Discussion
4.1. Linearity of Initial OD Response
4.2. Initial Clearing Behavior
4.3. Reusability and Dose Sensitivity upon Reirradiation
Author Contributions
Funding
Conflicts of Interest
References
- Kry, S.F.; Alvarez, P.; Cygler, J.E.; DeWerd, L.A.; Howell, R.M.; Meeks, S.; O’Daniel, J.; Reft, C.; Sawakuchi, G.; Yukihara, G.; et al. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med. Phys. 2019, 47, e19–e51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagisawa, S.; Maruyama, D.; Oh, R.; Koba, Y.; Andoh, T.; Shinsho, K. Two-dimensional Thermoluminescence Dosimetry Using Al2O3: Cr Ceramics for 4, 6, and 10 MV X-ray Beams. Sens. Mater. 2020, 32, 1479. [Google Scholar] [CrossRef] [Green Version]
- Niroomand-Rad, A.; Chiu-Tsao, S.; Grams, M.P.; Lewis, D.F.; Soares, C.G.; Van Battum, L.J.; Das, I.J.; Trichter, S.; Kissick, M.W.; Massillon-Jl, G.; et al. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55. Med Phys. 2020, 47, 5986–6025. [Google Scholar] [CrossRef] [PubMed]
- Oaki, Y.; Ishijima, Y.; Imai, H. Emergence of temperature-dependent and reversible color-changing properties by the stabilization of layered polydiacetylene through intercalation. Polym. J. 2018, 50, 319–326. [Google Scholar] [CrossRef]
- Hall, A.V.; Musa, O.M.; Hood, D.K.; Apperley, D.C.; Yufit, D.S.; Steed, J.W. Alkali Metal Salts of 10,12-Pentacosadiynoic Acid and Their Dosimetry Applications. Cryst. Growth Des. 2021, 21, 2416–2422. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.; Yoon, S.W.; Kodra, J.; Coakley, R.; Subashi, E.; Sidhu, K.; Adamovics, J.; Oldham, M. An investigation of a novel reusable radiochromic sheet for 2D dose measurement. Med Phys. 2019, 46, 5758–5769. [Google Scholar] [CrossRef] [PubMed]
- Khezerloo, D.; Nedaie, H.A.; Takavar, A. PRESAGE® as a solid 3D dosimeter: A review article. Radiat. Phys. Chem. 2017, 141, 88–97. [Google Scholar] [CrossRef]
- Oldham, M. Methods and techniques for comprehensive 3D dosimetry. In Advances in Medical Physics; Godfrey, D., Das, S., Wolbars, A., Eds.; Medical Physics Pub Corp: Madison, WI, USA, 2014; pp. 70–81. [Google Scholar]
- Juang, T. Clinical and Research Applications of 3D Dosimetry. PhD Thesis, Duke University, Durham, NC, USA, 2015. Available online: https://dukespace.lib.duke.edu/dspace/handle/10161/10478 (accessed on 10 January 2021).
- Adamovics, J.A. Detection of therapeutic radiation in three-dimensions. Beilstein J. Org. Chem. 2017, 13, 1325–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamovics, J.; Coakley, R. Chemical Dosimeters. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; p. 012028. [Google Scholar]
- Liu, K.; Wang, Y.; Lemus, O.M.D.; Adamovics, J.; Wuu, C. Temperature dependence and temporal stability of stacked radiochromic sheets for three-dimensional dose verification. Med. Phys. 2020, 47, 5906–5918. [Google Scholar] [CrossRef] [PubMed]
Formulation # | TAM Structure |
---|---|
1. 1.5%-Methyl-LMG-DMA; 0.4% CBr4 Molecular Ratio TAM: CBr4 (1:0.21) | |
2. 1.5% 2,4 Dimethyl-LMG-DEA;0.4% CBr4 Molecular Ratio (1:0.4) | |
3. 2% LMG; 1.5% CBr4 Molecular Ratio (1:0.75) |
Irradiation # | ΔOD/Gy | % Change |
---|---|---|
First | 0.0898 | 0 |
Second | 0.0686 | −23.6 |
Third | 0.0538 | −40.1 |
Fourth | 0.0527 | −41.3 |
Fifth | 0.0469 | −47.7 |
Irradiation # | MAPE % | Least Squares R2 |
---|---|---|
First | 3.05 | 0.9966 |
Second | 1.24 | 0.9993 |
Third | 2.14 | 0.9981 |
Fourth | 4.46 | 0.9989 |
Fifth | 3.92 | 0.9980 |
Irradiation # | ΔOD/Gy Group 1 | % Change | ΔOD/Gy Group 2 | % Change |
---|---|---|---|---|
First | 0.0710 | 0 | 0.0678 | 0 |
Second | 0.0661 | −6.9 | 0.0677 | −1.5 |
Third | 0.0723 | 1.8 | 0.0720 | 6.2 |
Fourth | 0.0680 | −4.2 | 0.0689 | 1.6 |
Fifth | 0.0680 | 4.2 | 0.0693 | 2.2 |
Irradiation # | MAPE% Group 1 | Least Squares R2 | MAPE % Group 2 | Least Squares R2 |
---|---|---|---|---|
First | 1.78 | 0.9994 | 3.23 | 0.9985 |
Second | 4.68 | 0.9967 | 2.45 | 0.9951 |
Third | 4.40 | 0.9963 | 4.22 | 0.9968 |
Fourth | 3.79 | 0.9972 | 3.48 | 0.9985 |
Fifth | 3.60 | 0.9983 | 2.87 | 0.9986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newton, J.R.; Recht, M.; Hauger, J.A.; Segarra, G.; Inglett, C.; Romo, P.A.; Adamovics, J. Feasibility of a Reusable Radiochromic Dosimeter. Appl. Sci. 2021, 11, 9906. https://doi.org/10.3390/app11219906
Newton JR, Recht M, Hauger JA, Segarra G, Inglett C, Romo PA, Adamovics J. Feasibility of a Reusable Radiochromic Dosimeter. Applied Sciences. 2021; 11(21):9906. https://doi.org/10.3390/app11219906
Chicago/Turabian StyleNewton, Joseph R., Maxwell Recht, Joseph A. Hauger, Gabriel Segarra, Chase Inglett, Pedro A. Romo, and John Adamovics. 2021. "Feasibility of a Reusable Radiochromic Dosimeter" Applied Sciences 11, no. 21: 9906. https://doi.org/10.3390/app11219906
APA StyleNewton, J. R., Recht, M., Hauger, J. A., Segarra, G., Inglett, C., Romo, P. A., & Adamovics, J. (2021). Feasibility of a Reusable Radiochromic Dosimeter. Applied Sciences, 11(21), 9906. https://doi.org/10.3390/app11219906