Synthesis of Zeolitic Material with High Cation Exchange Capacity from Paper Sludge Ash Using EDTA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Experimental Method
3. Results and Discussion
4. Conclusions
- (1)
- EDTA can extract Ca from the solution and inhibit Ca interference during zeolite synthesis by Ca masking.
- (2)
- Hydroxysodalite, zeolite-P, and zeolite-A can be synthesized from PSA using an alkali reaction with EDTA, and the main zeolite phase can be adjusted by the addition of EDTA.
- (3)
- A product with a high CEC, which has a high zeolite-A content, can be obtained.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrer, R.M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves; Academic Press: London, UK, 1978; pp. 1–22. [Google Scholar]
- Gottardi, G.; Galli, E. Natural Zeolites; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- McCusker, L.B.; Olson, D.H.; Baerlocher, C. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Kurniawan, T.; Nuryoto, N.; Firdaus, M.A. Zeolite for agriculture intensification and catalyst in Agroindustry. World Chem. Eng. J. 2019, 3, 14–23. [Google Scholar]
- Breck, D.W. Zeolite Molecular Sieves: Structure, Chemistry and Use; John Wiley&Sons: New York, NY, USA, 1974. [Google Scholar]
- Colella, C.; Mumpton, F.A. Natural Zeolites for the Third Millennium; International Committee on Natural Zeolites—ICNZ: Napoli, Italy, 2000. [Google Scholar]
- Li, Y.; Li, L.; Yu, J. Applications of zeolites in sustainable chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Zheng, J.; Liu, Y.; Ning, W.; Tian, H.; Li, R. Construction and practical application of a novel zeolite catalyst for hierarchically cracking of heavy oil. J. Catal. 2019, 369, 72–85. [Google Scholar] [CrossRef]
- Adamaref, S.; An, W.; Jarligo, M.O.; Kuznicki, T.; Kuznicki, S.M. Natural clinoptilolite composite membranes on tubular stainless steel supports for water softening. Water Sci. Technol. 2014, 70, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Tauanova, Z.; Tsakiridis, P.E.; Mikhalovsky, S.V.; Inglezakis, V.J. Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water. J. Environ. Manag. 2018, 224, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, L.; Sun, S.; Gao, J.; Zhang, H.; Zhang, Z.; Wang, Z. Disinfection and removal performance for Escherichia coli, toxic heavy metals and arsenic by wood vinegar- modified zeolite. Ecotoxicol. Environ. Saf. 2019, 174, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, K.; Matsui, M.; Mizukami, F. Applications of zeolite inorganic composites in biotechnology: Current state and perspectives. Appl. Microbiol. Biotechnol. 2005, 67, 306–311. [Google Scholar] [CrossRef]
- Montalvo, S.; Guerrero, L.; Borja, R.; Sanchez, E.; Milan, Z.; Cortes, I.; De La Rubia, M.A. Application of natural zeolites in anaerobic digestion processes: A review. Appl. Clay Sci. 2012, 58, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018, 5, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Hrenovic, J.; Milenkovic, J.; Ivankovic, T.; Rajic, N. Antibacterial activity of heavy metal-loaded natural zeolite. J. Hazard Mater. 2012, 201, 260–264. [Google Scholar] [CrossRef]
- Tavolaro, P.; Catalano, S.; Martino, G.; Tavolaro, A. Zeolite inorganic scaffolds for novel biomedical application: Effect of physicochemical characteristic of zeolite membranes on cell adhesion and viability. Appl. Surf. Sci. 2016, 380, 135–140. [Google Scholar] [CrossRef]
- Stylianou, M.A. Natural zeolites in medicine. In Handbook of Natural Zeolites; Inglezakis, V.J., Zorpas, A.A., Eds.; Bentham Science Publishers: Sarja, United Arab Emirates, 2012; pp. 317–334. [Google Scholar]
- Kraljevic-Pavelic, S.; Simovic-Medica, J.; Gumbarevic, D.; Filosević, A.; Przulj, N.; Pavelic, K. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Front. Pharmacol. 2018, 9, 1–15. [Google Scholar] [CrossRef]
- Barrer, R.M.; Beaumont, R.; Colella, C. Chemistry of soil minerals. Part XIV. Action of some basic solution on metakaolinite and kaolinite. J. Chem. Soc. Dalton Trans. 1974, 9, 934–941. [Google Scholar] [CrossRef]
- Ruiz, R.; Banco, C.; Pesquera, C.; Gonzalez, F.; Benito, I.; Lopez, J.L. Zeolitization of a bentonite and its application to the removal of ammonium ion from wastewater. Appl. Clay Sci. 1997, 12, 73–83. [Google Scholar] [CrossRef]
- Baccouche, A.; Srasra, E.; Maaoui, M.E. Preparation of Na-P1 and sodalite octahydrate zeolites from interstratified illite-smectite. Appl. Clay Sci. 1998, 13, 255–273. [Google Scholar] [CrossRef]
- Gualtieri, A.F. Synthesis of sodium zeolites from a natural halloysite. Phys. Chem. Miner. 2001, 28, 719–728. [Google Scholar] [CrossRef]
- Boukadir, D.; Bettahar, N.; Derriche, Z. Synthesis of zeolites 4A and HS from natural materials. Annu. Chim. Sci. Mater. 2002, 27, 1–13. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, N.; Umana, J.C.; Alastuey, A.; Hernandez, E. Synthesis of zeolites from coal fly ash: An overview. Int. J. Coal Geol. 2002, 50, 413–423. [Google Scholar] [CrossRef]
- Yang, G.C.C.; Yang, T.-Y. Synthesis of zeolites from municipal incinerator fly ash. J. Hazard. Mater. 1998, 62, 75–89. [Google Scholar] [CrossRef]
- Wajima, T.; Ikegami, Y. Synthesis of zeolitic materials from waste porcelain at low temperature via a two-step alkali conversion. Ceram. Int. 2007, 33, 1269–1274. [Google Scholar] [CrossRef]
- Wajima, T. Synthesis of zeolitic material from green tuff stone cake and its adsorption properties of silver (I) from aqueous solution. Microporous Mesoporous Mater. 2016, 233, 154–162. [Google Scholar] [CrossRef]
- Querol, X.; Umaña, J.C.; Plana, F.; Alastuey, A.; López-Solar, A.; Medinaceli, A.; Valero, A.; Domingo, M.J.; Gracia-Rojo, E. Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. Fuel 2001, 80, 857–865. [Google Scholar] [CrossRef]
- Sigemoto, N.; Hayashi, H.; Miyamura, K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. J. Mater. Sci. 1993, 28, 4781–4786. [Google Scholar] [CrossRef]
- Hollman, G.G.; Steenbruggen, G.; Janssen-Jurkovicova, M. A two-step process for the synthesis of zeolites from coal fly ash. Fuel 1999, 78, 1225–1230. [Google Scholar] [CrossRef]
- Wajima, T.; Munakata, K. Effect of alkali species on synthesis of K-F zeolitic materials from paper sludge ash for soil amendment. Chem. Eng. J. 2012, 207, 906–912. [Google Scholar] [CrossRef]
- Wajima, T.; Kiguchi, O.; Sugawara, K.; Sugawara, T. Synthesis of zeolite-A using silica from rice husk ash. J. Chem. Eng. Jpn. 2009, 42, S61–S66. [Google Scholar] [CrossRef] [Green Version]
- Wajima, T.; Shimizu, T.; Ikegami, Y. Synthesis of zeolites from paper sludge ash and their ability to simultaneously remove NH4+ and PO43−. J. Environ. Sci. Health A 2007, 42, 345–350. [Google Scholar] [CrossRef]
- Monte, M.C.; Fuente, E.; Blanco, A.; Negro, C. Waste management from pulp and paper production in the European Union. Waste Manag. 2009, 29, 293–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, N.; Ujike, I.; Kawai, K.; Kawaguchi, T.; Yasuhara, H.; Nagae, T. Performance evaluation of low carbon concrete using paper sludge ash. J. MMIJ 2017, 133, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.; Lim, Y.T.; Kang, J.H.; So, S.; So, H. Influence of calcination and cooling conditions on pozzolanic reactivity of paper mill sludge. Constr. Build. Mater. 2018, 166, 257–270. [Google Scholar] [CrossRef]
- Bui, N.K.; Satomi, T.; Takahashi, H. Influence of industrial by-product and waste paper sludge ash on properties of recycles aggregate concrete. J. Clean. Prod. 2019, 214, 403–418. [Google Scholar] [CrossRef]
- Mavroulidou, M. Use of waste paper sludge ash as a calcium-based stabilizer for clay soils. Waste Manag. Res. 2018, 36, 1066–1072. [Google Scholar] [CrossRef]
- Mun, S.P.; Ahn, B.J. Chemical conversion of paper sludge incineration ash into synthetic zeolite. J. Ind. Eng. Chem. 2001, 7, 292–298. [Google Scholar]
- Coleman, N.J.; Brassington, D.S. Synthesis of Al-substituted 11Å tobermorite from newsprint recycling residue: A feasibility study. Mater. Res. Bull. 2003, 38, 485–497. [Google Scholar] [CrossRef]
- Belviso, C. State-of-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Koshy, N.; Singh, D.N. Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng. 2016, 4, 1460–1472. [Google Scholar] [CrossRef]
- Lee, C.-H.; Park, S.-W.; Kim, S.-S. Breakthrough analysis of carbon dioxide adsorption on zeolite synthesized from coal fly ash. Korean J. Chem. Eng. 2014, 31, 179–187. [Google Scholar] [CrossRef]
- Wajima, T.; Ishimoto, H.; Kuzawa, K.; Ito, K.; Tamada, O.; Gunter, M.E.; Rakovan, J.F. Material conversion from paper sludge ash in NaOH, KOH, and LiOH solutions. Am. Mineral. 2007, 92, 1105–1111. [Google Scholar] [CrossRef]
- Wajima, T.; Sugawara, K. Material conversion from various incinerated ashes using alkali fusion method. Int. J. Soc. Mater. Eng. Resour. 2010, 17, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Wajima, T.; Shimizu, T.; Ikegami, Y. Zeolite synthesis from paper sludge ash with addition of diatomite. J. Chem. Technol. Biotechnol. 2008, 83, 921–927. [Google Scholar] [CrossRef]
- Catalfamo, P.; Patane, G.; Primerano, P.; Pasquale, S.D.; Corigliano, F. The presence of calcium in the hydrothermal conversion of amorphous aluminosilicates into zeolites: Interference and removal. Mater. Eng. 1994, 5, 159–173. [Google Scholar]
- Wajima, T.; Ikegami, Y. Zeolite synthesis from paper sludge ash via acid leaching. Chem. Eng. Commun. 2008, 195, 305–315. [Google Scholar] [CrossRef]
- Wajima, T.; Munakata, K. Removal of Ca from paper sludge ash by acid leaching and synthesis of high cation exchange capacity zeolite material. Int. J. Soc. Mater. Eng. Resour. 2011, 18, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Wajima, T. Effects of step-wise acid leaching with HCl on synthesis of zeolitic materials from paper sludge ash. Minerals 2020, 10, 402. [Google Scholar] [CrossRef]
- Wajima, T.; Kuzawa, K.; Ishimoto, H.; Tamada, O.; Nishiyama, T. The synthesis of zeolite-P, Linde Type A, and hydroxysodalite zeolites from paper-sludge ash at low temperature (80 °C): Optimal ash-leaching condition for zeolite synthesis. Am. Mineral. 2004, 89, 1694–1700. [Google Scholar] [CrossRef]
- Fernandes Machado, N.R.C.; Malachini Miotto, D.M. Synthesis of Na–A and –X zeolites from oil shale ash. Fuel 2005, 84, 2289–2294. [Google Scholar] [CrossRef]
- Kato, Y.; Kakimoto, K.; Ogawa, H.; Tomai, M.; Sakamoto, E. An application of hydrothermal crystallized coal fly ashes to wastewater treatment. Kougyo-Yousui 1986, 331, 27–33. [Google Scholar]
- Ando, T.; Sakamoto, T.; Sugiyama, O.; Hiyoshi, K.; Matsue, N.; Henmi, T. Adsorption mechanism of Pb on paper sludge ash treated by NaOH hydrothermal reaction. Clay Sci. 2004, 12, 243–248. [Google Scholar] [CrossRef]
- Wajima, T.; Munakata, K. Material conversion from paper sludge ash in NaOH solution to synthesize adsorbent for removal of Pb2+, NH4+ and PO43− from aqueous solution. J. Environ. Sci. 2011, 23, 718–724. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Abdelrahman, E.A.; Aly, A.A.; Mohamed, T.Y. A facile synthesis of mordenite zeolite nanostructures for efficient bleaching of crude soybean oil and removal of methylene blue dye from aqueous media. J. Mol. Liq. 2017, 248, 302–313. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Abdelrahman, E.A. Hydrothermal tuning of the morphology and crystalline size of zeolite nanostructures for simultaneous adsorption and photocatalytic degradation of methylene blue dye. J. Mol. Liq. 2017, 242, 364–374. [Google Scholar] [CrossRef]
- Abdelrahman, E.A. Synthesis of zeolite nanostructures from waste aluminium cans for efficient removal of malachite green gye from aqueous media. J. Mol. Liq. 2018, 253, 72–82. [Google Scholar] [CrossRef]
- Murayama, N.; Yamamoto, H.; Shibata, J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int. J. Miner. Process. 2002, 64, 1–17. [Google Scholar] [CrossRef]
Oxide (wt.%) | PSA | Without 1 M EDTA | With 1 M EDTA | ||||
---|---|---|---|---|---|---|---|
80 °C | 120 °C | 160 °C | 80 °C | 120 °C | 160 °C | ||
SiO2 | 28.1 | 31.2 | 29.0 | 28.7 | 41.3 | 46.2 | 45.1 |
Al2O3 | 18.5 | 12.1 | 13.0 | 13.1 | 24.2 | 25.8 | 24.7 |
CaO | 42.6 | 46.4 | 47.3 | 47.2 | 19.6 | 11.7 | 13.3 |
MgO | 4.0 | 3.5 | 3.5 | 3.9 | 5.1 | 5.3 | 5.1 |
Fe2O3 | 1.6 | 1.9 | 1.9 | 1.9 | 2.8 | 3.0 | 3.0 |
TiO2 | 2.7 | 3.0 | 3.1 | 3.1 | 4.5 | 4.8 | 4.8 |
Others | 2.5 | 1.9 | 2.2 | 2.1 | 2.5 | 3.2 | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wajima, T. Synthesis of Zeolitic Material with High Cation Exchange Capacity from Paper Sludge Ash Using EDTA. Appl. Sci. 2021, 11, 11231. https://doi.org/10.3390/app112311231
Wajima T. Synthesis of Zeolitic Material with High Cation Exchange Capacity from Paper Sludge Ash Using EDTA. Applied Sciences. 2021; 11(23):11231. https://doi.org/10.3390/app112311231
Chicago/Turabian StyleWajima, Takaaki. 2021. "Synthesis of Zeolitic Material with High Cation Exchange Capacity from Paper Sludge Ash Using EDTA" Applied Sciences 11, no. 23: 11231. https://doi.org/10.3390/app112311231
APA StyleWajima, T. (2021). Synthesis of Zeolitic Material with High Cation Exchange Capacity from Paper Sludge Ash Using EDTA. Applied Sciences, 11(23), 11231. https://doi.org/10.3390/app112311231