Assessment of Mineral Trioxide Aggregate Setting in Simulated Root Canal with Different Root Canal Wall Thickness: In Vitro Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Specimen Preparation
2.3. Nanoindentation Measurement of Whole Specimen
2.3.1. Study-I Nanoindentation Mapping of Whole Specimen
2.3.2. Study-II Nanoindentation Mapping of Periphery and the Center of Specimen
2.4. Statistical Analysis
3. Results
3.1. Representative Mechanical Characteristics
3.1.1. Hardness of Whole Specimen
3.1.2. Modulus of Elasticity of Whole Specimen
3.2. The Range of Influence of Root Canal Wall Thickness on Mechanical Properties of MTA—Effect of Wall Thickness on Hardness Spatial Dependence
3.3. Distribution of Clincker
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Hardness of Whole Specimen—the Mixed Effect Regression Model
Parameter | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
β0 | 0.452 | 0.021 | 21.216 | <0.0001 |
β1 | −0.313 | 0.051 | −6.131 | <0.0001 |
β2 | 0.389 | 0.058 | −6.735 | <0.0001 |
Appendix B. Modulus od Elasticity of Whole Specimen—the Mixed Effect Regression Model
Parameter | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
α0 | 3.846 | 0.016 | 236.296 | <0.0001 |
α1 | −0.270 | 0.027 | −10.003 | <0.0001 |
α2 | −0.109 | 0.023 | −4.802 | <0.0001 |
α3 | −0.206 | 0.038 | −5.406 | <0.0001 |
Appendix C. The Range of Influence of Root Canal Wall Thickness on Mechanical Properties of MTA—Effect of Wall Thickness on Hardness(and Modulus of Elasticity) Spatial Dependence—the Linear Model
Parameter | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
γ0 | −0.139 | 0.052 | −2.697 | 0.007 |
γ1 | −0.023 | 0.005 | −4.219 | <0.0001 |
γ2 | −0.240 | 0.021 | −11.550 | <0.0001 |
γ3 | −0.142 | 0.013 | −10.575 | <0.0001 |
γ4 | 0.246 | 0.045 | 4.980 | <0.0001 |
Parameter | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
δ0 | 3.695 | 0.023 | 163.848 | <0.0001 |
δ1 | −0.009 | 0.002 | −3.660 | 0.0003 |
δ2 | −0.142 | 0.009 | −15.607 | <0.0001 |
δ3 | −0.059 | 0.006 | −10.100 | <0.0001 |
δ4 | 0.074 | 0.022 | 3.401 | 0.0007 |
References
- Torabinejad, M.; Parirokh, M.; Dummer, P.M.H. Mineral Trioxide Aggregate and Other Bioactive Endodontic Cements: An Updated Overview-Part II: Other Clinical Applications and Complications. Int. Endod. J. 2018, 51, 284–317. [Google Scholar] [CrossRef]
- Cervino, G.; Laino, L.; D’Amico, C.; Russo, D.; Nucci, L.; Amoroso, G.; Gorassini, F.; Tepedino, M.; Terranova, A.; Gambino, D.; et al. Mineral Troxide Aggregate Applications in Endodontics: A Review. Eur. J. Dent. 2020, 14, 683–691. [Google Scholar]
- ProRoot MTA Product Literature; Dentsply Tulsa Dental: Tulsa, OK, USA, 2019.
- Hawley, M.; Webb, T.D.; Goodell, G.G. Effect of Varying Water-to-Powder Ratios on the Setting Expansion of White and Gray Mineral Trioxide Aggregate. J. Endod. 2010, 36, 1377–1379. [Google Scholar] [CrossRef]
- Bortoluzzi, E.A.; Cassel, A.T.; Néis, C.C.A.; Cássia, D.S.M.; Fonseca, R.G.L.; Dulcinéia, M.S.B.; Silveira, T.C. Effect of Different Water-to-Powder Ratios on the Dimensional Stability and Compressive Strength of Mineral Aggregate-Based Cements. Eur. Oral Res. 2019, 53, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Fridland, M.; Rosado, R. Mineral Trioxide Aggregate (MTA) Solubility and Porosity with Different Water-to-Powder Ratios. J. Endod. 2003, 29, 814–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavenago, B.C.; Pereira, T.C.; Duarte, M.A.H.; Ordinola-Zapata, R.; Marciano, M.A.; Bramante, C.M.; Bernardineli, N. Influence of Powder-to-Water Ratio on Radiopacity, Setting Time, PH, Calcium Ion Release and a Micro-CT Volumetric Solubility of White Mineral Trioxide Aggregate. Int. Endod. J. 2014, 47, 120–126. [Google Scholar] [CrossRef]
- Türker, S.A.; Uzunoğlu, E. Effect of Powder-to-Water Ratio on the Push-out Bond Strength of White Mineral Trioxide Aggregate. Dent. Traumatol. 2016, 32, 153–155. [Google Scholar] [CrossRef]
- Basturk, F.B.; Nekoofar, M.H.; Gunday, M.; Dummer, P.M.H. Effect of Varying Water-to-Powder Ratios and Ultrasonic Placement on the Compressive Strength of Mineral Trioxide Aggregate. J. Endod. 2015, 41, 531–534. [Google Scholar] [CrossRef]
- Ha, W.N.; Kahler, B.; Walsh, L.J. Clinical Manipulation of Mineral Trioxide Aggregate: Lessons from the Construction Industry and Their Relevance to Clinical Practice. J. Can. Dent. Assoc. 2015, 81, f4. [Google Scholar]
- DeAngelis, L.; Chockalingam, R.; Hamidi-Ravari, A.; Hay, S.; Lum, V.; Sathorn, C.; Parashos, P. In Vitro Assessment of Mineral Trioxide Aggregate Setting in the Presence of Interstitial Fluid Alone. J. Endod. 2013, 39, 402–405. [Google Scholar] [CrossRef]
- Shokouhinejad, N.; Jafargholizadeh, L.; Khoshkhounejad, M.; Nekoofar, M.H.; Raoof, M. Surface Microhardness of Three Thicknesses of Mineral Trioxide Aggregate in Different Setting Conditions. Restor. Dent. Endod. 2014, 39, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Caronna, V.; Himel, V.; Yu, Q.; Zhang, J.-F.; Sabey, K. Comparison of the Surface Hardness among 3 Materials Used in an Experimental Apexification Model under Moist and Dry Environments. J. Endod. 2014, 40, 986–989. [Google Scholar] [CrossRef]
- Budig, C.G.; Eleazer, P.D. In Vitro Comparison of the Setting of Dry ProRoot MTA by Moisture Absorbed through the Root. J. Endod. 2008, 34, 712–714. [Google Scholar] [CrossRef]
- Pelliccioni, G.A.; Vellani, C.P.; Gatto, M.R.A.; Gandolfi, M.G.; Marchetti, C.; Prati, C. Proroot Mineral Trioxide Aggregate Cement Used as a Retrograde Filling without Addition of Water: An in Vitro Evaluation of Its Microleakage. J. Endod. 2007, 33, 1082–1085. [Google Scholar] [CrossRef] [PubMed]
- Žižka, R.; Čtvrtlík, R.; Tomaštík, J.; Fačevicová, K.; Gregor, L.; Šedý, J. In Vitro Mechanical Properties of Mineral Trioxide Aggregate in Moist and Dry Intracanal Environments. Iran Endod. J. 2018, 13, 20. [Google Scholar]
- Qu, S.; Huang, Y.; Pharr, G.M.; Hwang, K.C. The Indentation Size Effect in the Spherical Indentation of Iridium: A Study via the Conventional Theory of Mechanism-Based Strain Gradient Plasticity. Int. J. Plast. 2006, 22, 1265–1286. [Google Scholar] [CrossRef]
- ISO 14577-1:2015. Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method; British Standards Institution: London, UK, 2015. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Agresti, A. Foundations of Linear and Generalized Linear Models, 1st ed.; John Wiley & Sons: London, UK, 2015. [Google Scholar]
- Luke, S.G. Evaluating Significance in Linear Mixed-Effects Models in R. Behav. Res. Methods 2017, 49, 1494–1502. [Google Scholar] [CrossRef]
- R Core Team; R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2019. Available online: https://www.R-project.org (accessed on 30 December 2020).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Hu, C. Nanoindentation as a Tool to Measure and Map Mechanical Properties of Hardened Cement Pastes. MRS Commun. 2015, 5, 83. [Google Scholar] [CrossRef]
- Camilleri, J. Composition and setting reaction. In Mineral Trioxide Aggregate in Dentistry: From Preparation to Application; Camilleri, J., Ed.; Springer: New York, NY, USA, 2014; pp. 19–36. [Google Scholar]
- Verbeck, G. Carbonation of hydrated Portland cement. In Cement and Concrete; ASTM International: West Conshohocken, PA, USA, 1958; pp. 17–36. [Google Scholar]
- Jancar, J. Bond Strength of Five Dental Adhesives Using a Fracture Mechanics Approach. J. Mech. Behav. Biomed. Mater. 2011, 4, 245–254. [Google Scholar] [CrossRef]
- Cauwels, R.G.E.C.; Pieters, I.Y.; Martens, L.C.; Verbeeck, R.M.H. Fracture Resistance and Reinforcement of Immature Roots with Gutta Percha, Mineral Trioxide Aggregate and Calcium Phosphate Bone Cement: A Standardized in Vitro Model. Dent. Traumatol. 2010, 26, 137–142. [Google Scholar] [CrossRef]
- Lindberg, G.; Shokry, A.; Reheman, W.; Svensson, I. Determination of Diffusion Coefficients in Bovine Bone by Means of Conductivity Measurement. Int. J. Exp. Comput. Biomech. 2014, 2, 324–342. [Google Scholar] [CrossRef]
- Pashley, D.H.; Livingston, M.J. Effect of Molecular Size on Permeability Coefficients in Human Dentine. Arch. Oral Biol. 1978, 23, 391–395. [Google Scholar] [CrossRef]
- Fogel, H.M.; Marshall, F.J.; Pashley, D.H. Effects of Distance from the Pulp and Thickness on the Hydraulic Conductance of Human Radicular Dentin. J. Dent. Res. 1988, 67, 1381–1385. [Google Scholar] [CrossRef]
- Guignes, P.; Faure, J.; Maurette, A. Relationship between Endodontic Preparations and Human Dentin Permeability Measured in Situ. J. Endod. 1996, 22, 60–67. [Google Scholar] [CrossRef]
- Yildirim, T.; Oruçoğlu, H.; Cobankara, F.K. Long-Term Evaluation of the Influence of Smear Layer on the Apical Sealing Ability of MTA. J. Endod. 2008, 34, 1537–1540. [Google Scholar] [CrossRef]
- Ballal, N.V.; Sona, M.; Tay, F.R. Effects of Smear Layer Removal Agents on the Physical Properties and Microstructure of Mineral Trioxide Aggregate Cement. J. Dent. 2017, 66, 32–36. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Lin, F.-H.; Wang, W.-H.; Ritchie, H.H.; Lan, W.-H.; Lin, C.-P. Effects of EDTA on the Hydration Mechanism of Mineral Trioxide Aggregate. J. Dent. Res. 2007, 86, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Grawehr, M.; Sener, B.; Waltimo, T.; Zehnder, M. Interactions of Ethylenediamine Tetraacetic Acid with Sodium Hypochlorite in Aqueous Solutions. Int. Endod. J. 2003, 36, 411–417. [Google Scholar] [CrossRef]
- Lertmalapong, P.; Jantarat, J.; Srisatjaluk, R.L.; Komoltri, C. Bacterial Leakage and Marginal Adaptation of Various Bioceramics as Apical Plug in Open Apex Model. J. Investig. Clin. Dent. 2019, 10, e12371. [Google Scholar] [CrossRef] [Green Version]
- Al-Kahtani, A.; Shostad, S.; Schifferle, R.; Bhambhani, S. In-Vitro Evaluation of Microleakage of an Orthograde Apical Plug of Mineral Trioxide Aggregate in Permanent Teeth with Simulated Immature Apices. J. Endod. 2005, 31, 117–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildirim, T.; Er, K.; Taşdemir, T.; Tahan, E.; Buruk, K.; Serper, A. Effect of Smear Layer and Root-End Cavity Thickness on Apical Sealing Ability of MTA as a Root-End Filling Material: A Bacterial Leakage Study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, e67–e72. [Google Scholar] [CrossRef] [PubMed]
- Bolhari, B.; Nekoofar, M.H.; Sharifian, M.; Ghabrai, S.; Meraji, N.; Dummer, P.M.H. Acid and Microhardness of Mineral Trioxide Aggregate and Mineral Trioxide Aggregate–like Materials. J. Endod. 2014, 40, 432–435. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Lee, B.-S.; Lin, F.-H.; Lin, A.Y.; Lan, W.-H.; Lin, C.-P. Effects of Physiological Environments on the Hydration Behavior of Mineral Trioxide Aggregate. Biomaterials 2004, 25, 787–793. [Google Scholar] [CrossRef]
- Namazikhah, M.S.; Nekoofar, M.H.; Sheykhrezae, M.S.; Salariyeh, S.; Hayes, S.J.; Bryant, S.T.; Mohammadi, M.M.; Dummer, P.M.H. The Effect of PH on Surface Hardness and Microstructure of Mineral Trioxide Aggregate. Int. Endod. J. 2008, 41, 108–116. [Google Scholar] [CrossRef]
- Caicedo, R.; Gettleman, L. Physical properties of MTA. In Mineral Trioxide Aggregate: Properties and Clinical Applications; Torabinejad, M., Ed.; John Wiley & Sons: Ames, IA, USA, 2014; pp. 37–71. [Google Scholar]
- Davydov, D.; Jirasek, M.; Kopecký, L. Critical Aspects of Nano-Indentation Technique in Application to Hardened Cement Paste. Cem. Concr. Res. 2011, 41, 20–29. [Google Scholar] [CrossRef]
- Ylmen, R.; Jäglid, U. Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy. Int. J. Concr. Struct. Mater. 2013, 7, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Houst, Y.F. Carbonation Shrinkage of Hydrated Cement Paste. In Proceedings of the 4th CANMET/ACI International Conference on Durability of Concrete; CANMET: Ottawa, ON, Canada, 1997; pp. 481–491. [Google Scholar]
- Oraie, E.; Ghassemi, A.R.; Eliasifar, G.; Sadeghi, M.; Shahravan, A. Apical Sealing Ability of MTA in Different Liquid to Powder Ratios and Packing Methods. Iran. Endod. J. 2012, 7, 5. [Google Scholar]
Thickness | LP | LC | RC | RP |
---|---|---|---|---|
0.8 mm | 1 | 3 | 3 | 2 |
1.2 mm | 5 | 5 | 5 | 4 |
1.6 mm | 3 | 3 | 1 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žižka, R.; Čtvrtlík, R.; Tomáštík, J.; Fačevicová, K.; Vencálek, O.; Šedý, J.; Marinčák, D. Assessment of Mineral Trioxide Aggregate Setting in Simulated Root Canal with Different Root Canal Wall Thickness: In Vitro Study. Appl. Sci. 2021, 11, 1727. https://doi.org/10.3390/app11041727
Žižka R, Čtvrtlík R, Tomáštík J, Fačevicová K, Vencálek O, Šedý J, Marinčák D. Assessment of Mineral Trioxide Aggregate Setting in Simulated Root Canal with Different Root Canal Wall Thickness: In Vitro Study. Applied Sciences. 2021; 11(4):1727. https://doi.org/10.3390/app11041727
Chicago/Turabian StyleŽižka, Radovan, Radim Čtvrtlík, Jan Tomáštík, Kamila Fačevicová, Ondřej Vencálek, Jiří Šedý, and David Marinčák. 2021. "Assessment of Mineral Trioxide Aggregate Setting in Simulated Root Canal with Different Root Canal Wall Thickness: In Vitro Study" Applied Sciences 11, no. 4: 1727. https://doi.org/10.3390/app11041727
APA StyleŽižka, R., Čtvrtlík, R., Tomáštík, J., Fačevicová, K., Vencálek, O., Šedý, J., & Marinčák, D. (2021). Assessment of Mineral Trioxide Aggregate Setting in Simulated Root Canal with Different Root Canal Wall Thickness: In Vitro Study. Applied Sciences, 11(4), 1727. https://doi.org/10.3390/app11041727