Antiproliferative and Antimicrobial Activity of Anthocyanins from Berry Fruits after Their Isolation and Freeze-Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Source
2.2. Chemicals
2.3. Preparation of Plant Extracts
2.4. LC-MS-IT-TOF
2.5. Lyofilisation Methods and Anthocyanin Stabilization
2.6. Anti-Proliferative Activity
2.7. Antimicrobial Activity
3. Results
3.1. Qualitative Anthocyanin Content by LC-MS-IT-TOF Analyses
3.2. MTT Assay Results
3.3. Antimicrobial Activity of Anthocyanins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marcus, J.B. Aging, Nutrition and Taste: Nutrition, Food Science and Culinary Perspectives for Aging Tastefully; Elsevier Science Publishing Co. Inc.: San Diego, CA, USA, 2019; p. 526. ISBN 9780128135273. [Google Scholar]
- Dai, J.; Patel, J.D.; Mumper, R.J. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food 2007, 10, 258–265. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Li, X.; Chen, X.; Ye, X.; Huang, J.; Jin, Y.; Li, P.; Deng, Y.; Jin, Q.; Shi, Q. Evaluation of antidiabetic potential of selected traditional Chinese medicines in STZ-induced diabetic mice. J. Ethnopharmacol. 2011, 137, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Dorneanu, R.; Cioanca, O.; Chifiriuc, O.; Albu, E.; Tuchilus, C.; Mircea, C.; Salamon, I.; Hancianu, M. Synergic Benefits of Aronia Melanocarpa Anthocyanin—Rich Extracts and Antibiotics Used for Urinary Tract Infections. Farmacia 2017, 65, 778–783. [Google Scholar]
- Poracova, J.; Sedlak, V.; Gogalova, Z.; Ondekova, J.; Mydlarova-Blascakova, M.; Fejer, J.; Grulova, D. The antioxidant activity of Vitis vinifera L. and Vaccinium myrtillus L. extracts. Acta Hortic. 2016, 1125, 283–285. [Google Scholar] [CrossRef]
- Poracova, J.; Tkacikova, L.; Sedlak, V.; Blascakova, M. Antioxidant capacity of fruits elderberries (Sambucus nigra L.) and black chokeberry (Aronia melanocarpa Wild). Planta Med. 2012, 78, 1223–1224. [Google Scholar] [CrossRef]
- Rugină, D.; Sconţa, Z.; Leopold, L.; Pintea, A.; Bunea, A.; Socaciu, C. Antioxidant activities of chokeberry extracts and the cytotoxic action of their anthocyanin fraction on HeLa human cervical tumor cells. J. Med. Food 2012, 15, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Diaconeasa, Z.; Leopold, L.; Rugină, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int. J. Mol. Sci. 2015, 16, 2352–2365. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Gupte, A.; Gates, L.; Mumper, R. A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: Extraction methods, stability, anticancer properties and mechanisms. Food Chem. Toxicol. 2009, 47, 837–847. [Google Scholar] [CrossRef]
- Aqil, F.; Gupta, A.; Munagala, R.; Jeyabalan, J.; Kausar, H.; Sharma, R.J.; Singh, I.P.; Gupta, R.C. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry). Nutr. Cancer 2012, 64, 428–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrios, J.; Cordero, C.P.; Aristizabal, F.; Heredia, F.J.; Morales, A.L.; Osorio, C. Chemical analysis and screening as anticancer agent of anthocyanin-rich extract from uva caimarona (Pourouma cecropiifolia Mart.) fruit. J. Agric. Food Chem. 2010, 58, 2100–2110. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, E. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Laokuldilok, T.; Kanha, N. Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. Lwt Food Sci. Technol. 2015, 64, 405–411. [Google Scholar] [CrossRef]
- Wilkowska, A.; Ambroziak, W.; Czyżowska, A.; Adamiec, J. Effect of microencapsulation by spray-drying and freeze-drying technique on the antioxidant properties of blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Pol. J. Food Nutr. Sci. 2016, 66, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric. 2016, 96, 4235–4242. [Google Scholar] [CrossRef]
- Shui, G.; Leong, L.P. Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chem. 2006, 97, 277–284. [Google Scholar] [CrossRef]
- Krokida, M.; Maroulis, Z. Quality changes during drying of food materials. Dry. Technol. Agric. Food Sci. 2000, 4, 61–68. [Google Scholar]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Michalczyk, M.; Macura, R.; Matuszak, I. The effect of air-drying, freeze-drying and storage on the quality and antioxidant activity of some selected berries. J. Food Process. Preserv. 2009, 33, 11–21. [Google Scholar] [CrossRef]
- Çoklar, H.; Akbulut, M. Effect of sun, oven and freeze-drying on anthocyanins, phenolic compounds and antioxidant activity of black grape (Ekşikara)(Vitis vinifera L.). South Afr. J. Enol. Vitic. 2017, 38, 264–272. [Google Scholar]
- Raponi, F.; Moscetti, R.; Monarca, D.; Colantoni, A.; Massantini, R. Monitoring and optimization of the process of drying fruits and vegetables using computer vision: A review. Sustainability 2017, 9, 2009. [Google Scholar] [CrossRef] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-S.; Hecht, S.S.; Carmella, S.G.; Yu, N.; Larue, B.; Henry, C.; McIntyre, C.; Rocha, C.; Lechner, J.F.; Stoner, G.D. Anthocyanins in black raspberries prevent esophageal tumors in rats. Cancer Prev. Res. 2009, 2, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Ravipati, A.S.; Zhang, L.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J.; Smith, P.T.; Shanmugam, K.; Münch, G.; Wu, M.J. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. Bmc Complementary Altern. Med. 2012, 12, 173. [Google Scholar] [CrossRef] [Green Version]
- Shashirekha, M.; Mallikarjuna, S.; Rajarathnam, S. Status of bioactive compounds in foods, with focus on fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 1324–1339. [Google Scholar] [CrossRef]
- Medic, N.; Tramer, F.; Passamonti, S. Anthocyanins in colorectal cancer prevention. A systematic review of the literature in search of molecular oncotargets. Front. Pharmacol. 2019, 10, 675. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.W.; Gong, C.C.; Song, H.F.; Cui, Y.Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.; Zhao, C.; Schoene, N.; Guisti, M.M.; Moyer, M.P.; Magnuson, B.A. Anthocyanin-rich extract from Aronia meloncarpa E. induces a cell cycle block in colon cancer but not normal colonic cells. Nutr. Cancer 2003, 46, 186–196. [Google Scholar] [CrossRef]
- Kang, S.-Y.; Seeram, N.P.; Nair, M.G.; Bourquin, L.D. Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Lett. 2003, 194, 13–19. [Google Scholar] [CrossRef]
- Zhang, Y.; Vareed, S.K.; Nair, M.G. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci. 2005, 76, 1465–1472. [Google Scholar] [CrossRef]
- Zu, X.-y.; Zhang, Z.-y.; Zhang, X.-w.; Yoshioka, M.; Yang, Y.-n.; Ji, L. Anthocyanins extracted from Chinese blueberry (Vaccinium uliginosum L.) and its anticancer effects on DLD-1 and COLO205 cells. Chin. Med. J. 2010, 123, 2714–2719. [Google Scholar] [PubMed]
- Cushnie, T.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Burdulis, D.; Sarkinas, A.; Jasutiene, I.; Stackevicené, E.; Nikolajevas, L.; Janulis, V. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Pol. Pharm. 2009, 66, 399–408. [Google Scholar]
- Česonienė, L.; Jasutienė, I.; Šarkinas, A. Phenolics and anthocyanins in berries of European cranberry and their antimicrobial activity. Medicina 2009, 45, 992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cisowska, A.; Wojnicz, D.; Hendrich, A.B. Anthocyanins as antimicrobial agents of natural plant origin. Nat. Prod. Commun. 2011, 6, 1934578X1100600136. [Google Scholar] [CrossRef] [Green Version]
- Benn, T.; Kim, B.; Park, Y.-K.; Wegner, C.J.; Harness, E.; Nam, T.-G.; Kim, D.-O.; Lee, J.S.; Lee, J.-Y. Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. J. Nutr. Biochem. 2014, 25, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Wicks, S.M.; Salamon, I.; Calderon, A.I.; de Blanco, E.J.C.; Mahady, G.B. Sarcopenia, Diabetes, and Nutritional Intervention. In Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome; Elsevier Science Publishing Co. Inc.: San Diego, CA, USA, 2018; pp. 279–292. ISBN 978-0-12-812019-4. [Google Scholar]
- De Pascual-Teresa, S.; Sanchez-Ballesta, M.T. Anthocyanins: From plant to health. Phytochem. Rev. 2008, 7, 281–299. [Google Scholar] [CrossRef]
Compound Assigned | Rt (min) | Molecular Ions | Fragment Ions | Bilberry Vaccinium myrtillus | Highbush Blueberry Vaccinium corymbosum | Eldelberry Sambucus nigra | Black Chokeberry Aronia melanocarpa |
---|---|---|---|---|---|---|---|
cyanidine-3,5-diglucoside | 8,985 | 611,616 | 449,112; 287,06 | - | - | ● | - |
cyanidine-3-sambubioside-5-glukoside | 9,390 | 743,202 | 581,158; 449,106; 287,056 | - | - | ● | - |
delfinidine + hexose | 9,545 | 465,089 | 303,042 | - | ● | - | - |
delfinidine-3- galactoside | 9,565 | 465,102 | 303,051 | ● | - | - | - |
delfinidin-3- glucoside | 10,005 | 465,102 | 303,051 | ● | - | - | - |
cyanidine-3- galactoside | 10,300 | 449,106 | 287,055 | ● | ● | - | ● |
delfinidine-3- arabinoside | 10,375 | 435,093 | 303,050 | ● | ● | - | - |
cyanidine-3- glucoside | 10,677 | 449,106 | 287,055 | ● | ● | ● | ● |
cyanidine-3- sambubiozid | 10,750 | 581,148 | 287,053 | - | - | ● | - |
petunidine-3- galaktoside | 10,820 | 479,117 | 317,066 | ● | - | - | - |
petunidine + hexoze | 10,800 | 479,104 | 317,056 | - | ● | - | - |
cyanidine-3- arabinoside | 10,970 | 419,098 | 287,055 | ● | ● | - | ● |
cyanidine-3-rutinoside | 11,072 | 595,164 | 449,108; 287,050 | - | - | ● | - |
petunidine-3- glucoside | 11,105 | 479,118 | 317,066 | ● | - | - | - |
pelargonidíne-3-glucoside | 11,260 | 433,113 | 271,060 | - | - | ● | - |
peonidine-3- galactoside | 11,360 | 463,120 | 301,070 | ● | - | - | - |
peonidine + hexoze | 11,365 | 463,110 | 301,060 | - | ● | - | - |
petunidine3- arabinoside | 11,420 | 449,108 | 317,067 | ● | ● | - | - |
pelargonidíne-3-sambubio-side | 11,485 | 565,133 | 271,046 | - | - | ● | - |
peonidine-3- glucoside | 11,690 | 463,124 | 301,070 | ● | - | - | - |
malvidininne-3-galactoside | 11,704 | 493,133 | 331,082 | ● | ● | - | - |
cyanidine-3- xyloside | 11,815 | 419,097 | 287,053 | - | - | - | ● |
peonidine-3- arabinoside | 11,965 | 433,100 | 301,060 | ● | ● | - | - |
malvidine-3- glucoside | 11,955 | 493,133 | 331,082 | ● | ● | - | - |
malvidine-3- arabinoside | 12,265 | 463,124 | 331,080 | ● | ● | - | - |
Compound Assigned | Rt (min) | Molecular Ions | Fragment Ions | Bilberry Vaccinium myrtillus | Highbush Blueberry Vaccinium corymbosum | Eldelberry Sambucus nigra | Black Chokeberry Aronia melanocarpa |
---|---|---|---|---|---|---|---|
cyanidine-3,5-diglucoside | 9,305 | 611,160 | 449,112; 287,060 | - | - | ● | - |
cyanidine-3-sambubioside-5-glucoside | 9,835 | 743,202 | 581,158; 449,106; 287,056 | - | - | ● | - |
delfinidine + hexoze | 10,015 | 465,101 | 303,050 | ● | ● | - | - |
cyanidine-3- sambubioside | 11,050 | 581,148 | 287,054 | - | - | ● | - |
cyanidine-3- galactoside | 10,671 | 449,106 | 287,050 | ● | ● | - | ● |
delfinidine-3- arabinoside | 10,705 | 435,091 | 303,050 | ● | ● | - | - |
cyanidín-3- glukoside | 10,995 | 449,106 | 287,050 | ● | ● | ● | ● |
petunidine + hexose | 11,129 | 479,116 | 317,065 | ● | ● | - | - |
cyanidine-3- arabinoside | 11,265 | 419,098 | 287,054 | ● | ● | - | ● |
cyanidine-3- rutinoside | 11,315 | 595,164 | 449,108; 287,050 | - | - | ● | - |
pelargonidíne-3- glucoside | 11,559 | 433,113 | 271,060 | - | - | ● | - |
peonidine + hexose | 11,660 | 463,120 | 301,070 | ● | ● | - | - |
petunidine-3- arabinoside | 11,685 | 449,109 | 317,066 | ● | ● | - | - |
pelargonidíne-3-sambubio- side | 11,725 | 565,155 | 271,060 | - | - | ● | - |
malvidine-3- galactoside | 11,973 | 493,131 | 331,079 | ● | ● | - | - |
cyanidine-3- xyloside | 12,035 | 419,097 | 287,053 | - | - | - | ● |
peonidine-3- arabinoside | 12,215 | 433,111 | 301,070 | ● | ● | - | - |
malvidine-3- glucoside | 12,240 | 493,131 | 331,079 | ● | ● | - | - |
malvidine-3- arabinoside | 12,524 | 463,122 | 331,079 | ● | ● | - | - |
Compound Assigned | Bilberry Vaccinium myrtillus | Highbush Blueberry Vaccinium corymbosum | Eldelberry Sambucus nigra | Black Chokeberry Aronia melanocarpa |
---|---|---|---|---|
cyanidine-3- glucoside | 153.04 ± 29.64 | 1.39 ± 0.29 | 240.51 ± 50.87 | 52.52 ± 2.60 |
cyanidine-3- galactoside | 148.91 ± 30.50 | 35.42 ± 1.03 | - | 356.83 ± 84.76 |
malvidine-3- galactozide | 43.19 ± 8.87 | 65.46 ± 11.74 | - | - |
malvidine-3- glucoside | 144.75 ± 31.03 | 3.64 ± 0.29 | - | - |
cyanidine-3,5- diglucoside | - | - | 46.44 ± 2.78 | - |
cyanidine-3- rutinozide | - | - | 8.96 ± 0.58 | - |
Compound Assigned | Bilberry Vaccinium myrtillus | Highbush Blueberry Vaccinium corymbosum | Eldelberry Sambucus nigra | Black Chokeberry Aronia melanocarpa |
---|---|---|---|---|
cyanidine-3- glucoside | 550.60 ± 18.37 | 1.48 ± 0.09 | 958.47 ± 139.68 | 73.97 ± 5.65 |
cyanidine-3- galactoside | 545.89 ± 37.50 | 45.57 ± 1.94 | - | 1103.49 ± 10.99 |
malvidine-3- galactoside | 140.95 ± 5.24 | 250.49 ± 21.70 | - | - |
malvidine-3- glucoside | 456.42 ± 23.98 | 13.88 ± 2.54 | - | - |
cyanidine-3,5- diglucoside | - | - | 198.08 ± 3.88 | - |
cyanidine-3- rutinoside | - | - | 21.62 ± 2.65 | - |
IC50 | RSNA | RACA | RVMA | RACE | RSNE | RVME | RVCE |
---|---|---|---|---|---|---|---|
24 h | up to 1mg/mL | 0.88 mg/mL | 0.875 mg/mL | 0.108 mg/mL | 0.370 mg/mL | 0.175 mg/mL | 0.196 mg/mL |
48 h | up to 1mg/mL | 0.541 mg/mL | 0.576 mg/mL | 0.093 mg/mL | 0.151 mg/mL | 0.159 mg/mL | 0.167 mg/mL |
№ | Samples | S. aureus ATCC 25923 | E. coli ATCC 25922 | E. faecalis ATCC 29212 | S. pyogenes ATCC 19615 | C. albicans ATCC 885-653 |
---|---|---|---|---|---|---|
1 | Vaccinium myrtillus (ethanol) | 9.33 ± 0.50 | - | - | - | - |
2 | Vaccinium myrtillus (acetone) | 9.50 ± 0.50 | 8.66 ± 0.58 | 17.66 ± 0.58 | - | |
3 | Aronia melanocarpa (ethanol) | 16.50 ± 0.29 | 8.33 ± 0.58 | - | - | |
4 | Aronia melanocarpa (acetone) | 13.33 ± 0.58 | - | 12.83 ± 0.58 | - | - |
5 | Sambucus nigra (ethanol) | - | - | - | - | - |
6 | Sambucus nigra (acetone) | - | - | - | - | - |
7 | Vaccinium corymbosum (ethanol) | - | 10.83 ± 0.76 | - | - | - |
№ | Samples | S. aureus | E. coli | E. faecalis | S. pyogenes | C. albicans |
---|---|---|---|---|---|---|
1 | Vaccinium myrtillus (ethanol) | 9.11 ± 0.29 | - | - | - | - |
2 | Vaccinium myrtillus (acetone) | 12.33 ± 0.58 | - | 11.33 ± 0.58 | - | - |
3 | Aronia melanocarpa (ethanol) | 13.00 ± 1.00 | - | - | - | - |
4 | Aronia melanocarpa (acetone) | 10.66 ± 0.58 | - | - | - | - |
5 | Sambucus nigra (ethanol) | - | - | - | - | - |
6 | Sambucus nigra (aceton) | - | - | - | - | - |
7 | Vaccinium corymbosum (ethanol) | 10.83 ± 0.76 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamon, I.; Şimşek Sezer, E.N.; Kryvtsova, M.; Labun, P. Antiproliferative and Antimicrobial Activity of Anthocyanins from Berry Fruits after Their Isolation and Freeze-Drying. Appl. Sci. 2021, 11, 2096. https://doi.org/10.3390/app11052096
Salamon I, Şimşek Sezer EN, Kryvtsova M, Labun P. Antiproliferative and Antimicrobial Activity of Anthocyanins from Berry Fruits after Their Isolation and Freeze-Drying. Applied Sciences. 2021; 11(5):2096. https://doi.org/10.3390/app11052096
Chicago/Turabian StyleSalamon, Ivan, Ela Nur Şimşek Sezer, Maryna Kryvtsova, and Pavol Labun. 2021. "Antiproliferative and Antimicrobial Activity of Anthocyanins from Berry Fruits after Their Isolation and Freeze-Drying" Applied Sciences 11, no. 5: 2096. https://doi.org/10.3390/app11052096
APA StyleSalamon, I., Şimşek Sezer, E. N., Kryvtsova, M., & Labun, P. (2021). Antiproliferative and Antimicrobial Activity of Anthocyanins from Berry Fruits after Their Isolation and Freeze-Drying. Applied Sciences, 11(5), 2096. https://doi.org/10.3390/app11052096