Sulfuric Acid Resistance of CNT-Cementitious Composites
Abstract
:1. Introduction
2. Experimental Programs
2.1. Materials and Mixture Proportions
2.2. Experimental Methods
3. Test Results and Discussion
3.1. Features of Sulfate Resistance
3.2. Strength Properties
3.3. Electric Resistance
3.4. Pore Distribution Characteristics
4. Conclusions
- When CNT was added to cement mortar, the compressive and flexural strengths further decreased compared to those of the specimen without CNT due to an increase in the amount of pores inside. In particular, it was found that relatively large pores with sizes ranging from 370 to 80 μm occurred due to the van der Waals force, and these pores resulted in the degradation of mechanical properties.
- The electrical resistance of the CNT cementitious composites was significantly reduced by to up to 90%. In addition, the decrease in resistance value was greater in SWCNT cementitious composites than in MWCNT mixtures, indicating that SW exhibited more excellent electrical properties. The specimen subjected to deterioration resulting from sulfate ions showed a slight increase in the resistance compared to that before the damage. This signifies that there will be no major complications in exhibiting self-sensing performance.
- The incorporation of CNTs led to large pores forming in the cement mortar. However, as CNT particles with excellent chemical resistance prevented contact between cement hydrates and sulfate ions, the relaxation and breakage of hydrates affected the weight reduction rate and compressive strength decrease ratio, thereby improving the resistance to sulfate attack. In future studies, it is necessary to analyze the effect of the contact area between sulfuric acid and the cement structure on the pore size and pore distribution created by the incorporation of CNTs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Balageas, D.; Fritzen, C.P.; Güemes, A. Structural Health Monitoring, 1st ed.; Wiley-ISTE: London, UK, 2010. [Google Scholar]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001. [Google Scholar] [CrossRef]
- Yan, R.; Chen, X.; Mukhopadhyay, S.C. Structural Health Monitoring, 1st ed.; Springer: Berlin, Germany, 2017. [Google Scholar]
- Bao, Y.; Chen, Z.; Wei, S.; Xu, Y.; Tang, Z.; Li, H. The state of the art of data science and engineering in structural health monitoring. Engineering 2019, 5, 234–242. [Google Scholar] [CrossRef]
- Wang, C.S.; Wu, F.; Chang, F.K. Structural health monitoring from fiber-reinforced composites to steel-reinforced concrete. Smart Mater. Struct. 2001, 10, 548–552. [Google Scholar]
- Silva-Muñoz, R.A.; Lopez-Anido, R.A. Structural health monitoring of marine composite structural joints using embedded fiber Bragg grating strain sensors. Compos. Struct. 2009, 89, 224–234. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D.D.L. Uniaxial compression in carbon fiber-reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions. Cem. Concr. Res. 2001, 31, 297–301. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D.D.L. Strain-sensing characteristics of carbon fiber-reinforced cement. ACI Mater. J. 2005, 102, 244–248. [Google Scholar]
- Han, B.; Yu, X.; Kwon, E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology 2009, 20, 445501. [Google Scholar] [CrossRef] [PubMed]
- Azhari, F.; Banthia, N. Cement-based sensors with carbon fibers and carbon nanotubes for piezo resistive sensing. Cem. Concr. Compos. 2012, 34, 866–873. [Google Scholar] [CrossRef]
- Galao, O.; Baeza, F.J.; Zornoza, E.; Garcés, P. Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cem. Concr. Compos. 2014, 46, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Park, I.S.; Lee, H.K. Improved piezo resistive sensitivity and stability of CNT/cement mortar composites with low water–binder ratio. Compos. Struct. 2014, 116, 713–719. [Google Scholar] [CrossRef]
- Lee, S.J.; You, I.; Zi, G.; Yoo, D.Y. Experimental investigation of the piezo resistive properties of cement composites with hybrid carbon fibers and nanotubes. Sensors 2017, 17, 2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, D.Y.; You, I.; Lee, S.J. Electrical properties of cement-based composites with carbon nanotube, graphene, and graphite nanofiber. Sensors 2017, 17, 1064. [Google Scholar] [CrossRef]
- Zhou, C.; Li, F.; Hu, J.; Ren, M.; Wei, J.; Yu, Q. Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Constr. Build. Mater. 2017, 1314, 336–345. [Google Scholar] [CrossRef]
- Yoo, D.Y.; You, I.; Youn, H.; Lee, S.J. Electrical and piezo resistive properties of cement composites with carbon nanomaterials. J. Compos. Mater. 2018, 52, 3325–3340. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Shen, L.; Sheng, D. Piezo resistive behaviours of carbon black cement-based sensors with layer-distributed conductive rubber fibres. Mater. Des. 2019, 182, 108012. [Google Scholar] [CrossRef]
- Kim, G.M.; Nam, I.W.; Yang, B.; Yoon, H.N.; Lee, H.K.; Park, S. Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art. Compos. Struct. 2019, 227, 111244. [Google Scholar] [CrossRef]
- Nayak, S.; Das, S. A microstructure-guided numerical approach to evaluate strain sensing and damage detection ability of random heterogeneous self-sensing structural materials. Comput. Mater. Sci. 2019, 156, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Rovnaník, P.; Kusak, I.; Bayer, P.; Schmid, P.; Fiala, L. Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars. Cem. Concr. Res. 2019, 118, 84–91. [Google Scholar] [CrossRef]
- Choi, E.k.; Yuan, T.; Lee, J.Y.; Yoon, Y.S. Self-sensing Properties of Concrete with Electric Arc Furnace Slag and Steel Fiber. J. Korean Soc. Hazard Mitig. 2019, 19, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.A.; Ann, K.Y. Evaluation on Sulfate Resistance of the High-durablility Culvert using CAC and GGBS. J. Korea Concr. Inst. 2018, 30, 465–472. [Google Scholar] [CrossRef]
- Lee, G.C.; Choi, J.G.; Koh, K.T. The Effects of Mixture Rate and Aspect Ratio of Steel Fiber on Mechanical Properties of Ultra High Performance Concrete. J. Korea Recycl. Constr. Resour. Inst. 2017, 5, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.N.; Jang, D.I.; Lee, H.K.; Nam, I.W. Influence of carbon fiber additions on the electromagnetic wave shielding characteristics of CNT-cement composites. Constr. Build. Mater. 2020, 269, 121238. [Google Scholar] [CrossRef]
- Choi, I.J.; Kim, J.H.; Chung, C.W. Mechanical Properties of Cement Paste with Nanomaterials. J. Korea Inst. Build. Constr. 2020, 20, 193–194. [Google Scholar]
- Mehta, P.K. Mechanism of sulfate attack on portland cement concrete—Another look. Cem. Concr. Res. 1983, 13, 401–406. [Google Scholar] [CrossRef]
- Wee, T.H.; Suryavanshi, A.K.; Wong, S.F.; Anisur Rahman, A.K.M. Sulfate resistance of concrete containing mineral admixtures. Aci Mater. J. 2000, 97, 536–549. [Google Scholar]
- Shazali, M.A.; Baluch, M.H.; Al-Gadhib, A.H. Predicting residual strength in unsaturated concrete exposed to sulfate attack. J. Mater. Civ. Eng. 2006, 18, 343–354. [Google Scholar] [CrossRef]
- Cavdar, A.; Yetgin, S. Investigation of mechanical and mineralogical properties of mortars subjected to sulfate. Constr. Build. Mater. 2010, 24, 2231–2242. [Google Scholar] [CrossRef]
- Shanahan, N.; Zayed, A. Cement composition and sulfate attack: Part I. Cem. Concr. Res. 2007, 37, 618–623. [Google Scholar] [CrossRef]
- Irassar, E.F.; Bonavetti, V.L.; González, M. Microstructural study of sulfate attack on ordinary and limestone portland cements at ambient temperature. Cem. Concr. Res. 2003, 33, 31–41. [Google Scholar] [CrossRef]
- Yu, C.; Scrivener, K. Mechanism of expansion of mortars immersed in sodium sulphate solution. Cem. Concr. Res. 2013, 43, 105–111. [Google Scholar] [CrossRef]
- Feng, P.; Garboczi, E.; Miao, C.; Bullard, J.W. Microstructural origins of cement paste degradation by external sulfate attack. Constr. Build. Mater. 2015, 96, 391–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, S.L.; Mahadevan, S.; Meeussen, J.C.L.; van der Sloot, H.; Kosson, S. Numerical simulation of cementitious materials degradation under external sulfate attack. Cem. Concr. Compos. 2010, 32, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Al-Akhras, N.M. Durability of metakaolin concrete to sulfate attack. Cem. Concr. Res. 2006, 36, 1727–1734. [Google Scholar] [CrossRef]
- Haufe, J.; Vollpracht, A. Tensile strength of concrete exposed to sulfate attack. Cem. Concr. Res. 2019, 116, 81–88. [Google Scholar] [CrossRef]
- Yun, H.D.; Youn, D.A.; Kim, J.H.; Lee, G.C.; Seo, S.Y. Tensile and Strain-sensing Properties of Hybrid Fibers Reinforced Strain-hardening Cement Composite (Hy-SHCC) with Different Carbon Nanotube (CNT) Dosages. J. Korea Concr. Inst. 2020, 32, 285–293. [Google Scholar] [CrossRef]
- Lee, G.C.; Kim, Y.M.; Hong, S.W. Influence of Powder and Liquid Multi-Wall Carbon Nanotubes on Hydration and Dispersion of the Cementitious Composites. Appl. Sci. 2020, 10, 7948. [Google Scholar] [CrossRef]
- Makar, J.M.; Margeson, J.C.; Luh, J. Carbon nanotube/cement composites—Early results and potential applications. In Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, BC, Canada, 22–24 August 2005. [Google Scholar]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Vaisman, L.; Wagner, H.D.; Marom, G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 2006, 128, 37–46. [Google Scholar] [CrossRef]
- Yu, J.; Grossiord, N.; Koning, C.E.; Loos, J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 2007, 45, 618–623. [Google Scholar] [CrossRef]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 2008, 20, 65–73. [Google Scholar] [CrossRef]
- Sanchez, F.; Ince, C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Compos. Sci. Technol. 2009, 69, 1310–1318. [Google Scholar] [CrossRef]
- Luo, Y.; Heng, Y.; Dai, X.; Chen, W.; Li, J. Preparation and photocatalytic ability of highly defective carbon nanotubes. J. Solid State Chem. 2009, 182, 2521–2525. [Google Scholar] [CrossRef]
- Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 2010, 32, 110–115. [Google Scholar] [CrossRef]
- Kim, B.R.; Lee, H.K.; Kim, E.; Lee, S.H. Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films. Synth. Met. 2010, 160, 1838–1842. [Google Scholar] [CrossRef]
- Nochaiya, T.; Chaipanich, A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl. Surf. Sci. 2011, 257, 1941–1945. [Google Scholar] [CrossRef]
- Collins, F.; Lambert, J.; Duan, W.H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cem. Concr. Compos. 2012, 34, 201–207. [Google Scholar] [CrossRef]
- Ha, S.J.; Kang, S.T.; Lee, J.H. Strength of CNT Cement Composites with Different Types of Surfactants and Doses. J. Korea Inst. Struct. Maint. Insp. 2015, 19, 99–107. [Google Scholar] [CrossRef] [Green Version]
- KS L 5201. Portland Cemen; Korean Agency for Technology and Standards: Maengdong-myeon, Korea, 2016; pp. 3–15. [Google Scholar]
- KS L ISO 679. Methods of Testing Cements—Determination of Strength; Korean Agency for Technology and Standards: Maengdong-myeon, Korea, 2016; pp. 12–16. [Google Scholar]
- KS F 2560. Chemical Admixtures for Concrete; Korean Agency for Technology and Standards: Maengdong-myeon, Korea, 2007; pp. 1–3. [Google Scholar]
- Bellmann, F.; Möser, B.; Stark, J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen. Cem. Concr. Res. 2006, 36, 358–363. [Google Scholar] [CrossRef]
- Bae, S.H.; Park, J.I.; Lee, K.M. Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete. J. Korea Concr. Inst. 2010, 22, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Elyamany, H.E.; Elmoaty, A.M.A.; Elshaboury, A. M Magnesium sulfate resistance of geopolymer mortar. Constr. Build. Mater. 2018, 184, 111–127. [Google Scholar] [CrossRef]
- JSTMC 7401. Method of Test for Chemical Resistance of Concrete in Aggressive Solution; Japanese Industrial Standard: Tokyo, Japan, 1999. [Google Scholar]
- Kwon, S.J.; Na, U.J. An experimental Study on Characteristics of Averaged Electromagnetic Properties considering Moisture Changes in Cement Mortar. J. Korea Concr. Inst. 2009, 21, 199–207. [Google Scholar] [CrossRef]
Chemical Properties (%) | Physical Properties | |||||
---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Density(g/cm3) | Fineness(cm2/g) |
22.23 | 5.21 | 3.38 | 64.58 | 2.3 | 3.15 | 3300 |
Item | MWCNT | SWCNT |
---|---|---|
Diameter (ηm) | 5~100 | 1.2~3.0 |
Length (μm) | 10 | 10 |
Tension (GPa) | <50 | ~45 |
Electrical resistance (Ω·m2) | 5.1 × 10−6 | 10 × 10−4 |
Thermal conductivity (W/m·K) | Max. 3000 | Max. 6000 |
Specific surface area (m2/g) | 130~160 | 700~900 |
Size (mm) | 2.0 | 1.6 | 1.0 | 0.5 | 0.16 | 0.08 |
---|---|---|---|---|---|---|
Percent finer (%) | 0 | 8 | 35 | 70 | 90 | 99 |
Sample | W/C | Weight (kg/m3) | Admixture (%) | ||||
---|---|---|---|---|---|---|---|
Cement | Water | Sand * | CNT | MWCNT | SWCNT | ||
CNT 0 | 0.5 | 510 | 255 | 1530 | 0 | 0 | 0 |
CNT 0.5 | 1530 | 2.55 | 0 | 2 | |||
CNT 1.0 | 1530 | 5.10 | 2 | 6 | |||
CNT 2.0 | 1530 | 10.2 | 4 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-C.; Kim, Y.; Seo, S.-Y.; Yun, H.-D.; Hong, S. Sulfuric Acid Resistance of CNT-Cementitious Composites. Appl. Sci. 2021, 11, 2226. https://doi.org/10.3390/app11052226
Lee G-C, Kim Y, Seo S-Y, Yun H-D, Hong S. Sulfuric Acid Resistance of CNT-Cementitious Composites. Applied Sciences. 2021; 11(5):2226. https://doi.org/10.3390/app11052226
Chicago/Turabian StyleLee, Gun-Cheol, Youngmin Kim, Soo-Yeon Seo, Hyun-Do Yun, and Seongwon Hong. 2021. "Sulfuric Acid Resistance of CNT-Cementitious Composites" Applied Sciences 11, no. 5: 2226. https://doi.org/10.3390/app11052226
APA StyleLee, G. -C., Kim, Y., Seo, S. -Y., Yun, H. -D., & Hong, S. (2021). Sulfuric Acid Resistance of CNT-Cementitious Composites. Applied Sciences, 11(5), 2226. https://doi.org/10.3390/app11052226