Pre- and Post-Operative Limb Symmetry Indexes and Estimated Preinjury Capacity Index of Muscle Strength as Predictive Factors for the Risk of ACL Reinjury: A Retrospective Cohort Study of Athletes after ACLR
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Patients and Treatment Procedures
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Muscle Strength Testing Results
3.3. Sensitivity and Specificity of Muscle Strength Indexes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACL | Anterior Cruciate Ligament |
ACLR | Anterior Cruciate Ligament Reconstruction |
EPIC | Estimated preinjury capacity |
EPIC-H | Estimated preinjury capacity of the healthy leg |
LSI | Limb symmetry index |
RTS | Return to sport |
References
- Frobell, R.B.; Lohmander, L.S.; Roos, H.P. Acute Rotational Trauma to the Knee: Poor Agreement between Clinical Assessment and Magnetic Resonance Imaging Findings. Scand. J. Med. Sci. Sports 2007, 17, 109–114. [Google Scholar] [CrossRef]
- Wright, R.W.; Dunn, W.R.; Amendola, A.; Andrish, J.T.; Bergfeld, J.; Kaeding, C.C.; Marx, R.G.; McCarty, E.C.; Parker, R.D.; Wolcott, M.; et al. Risk of Tearing the Intact Anterior Cruciate Ligament in the Contralateral Knee and Rupturing the Anterior Cruciate Ligament Graft during the First 2 Years after Anterior Cruciate Ligament Reconstruction: A Prospective MOON Cohort Study. Am. J. Sports Med. 2007, 35, 1131–1134. [Google Scholar] [CrossRef]
- Barber-Westin, S.D.; Noyes, F.R. Objective Criteria for Return to Athletics after Anterior Cruciate Ligament Reconstruction and Subsequent Reinjury Rates: A Systematic Review. Physician Sportsmed. 2011, 39, 100–110. [Google Scholar] [CrossRef]
- Ahldén, M.; Samuelsson, K.; Sernert, N.; Forssblad, M.; Karlsson, J.; Kartus, J. The Swedish National Anterior Cruciate Ligament Register: A Report on Baseline Variables and Outcomes of Surgery for Almost 18,000 Patients. Am. J. Sports Med. 2012, 40, 2230–2235. [Google Scholar] [CrossRef] [PubMed]
- Paterno, M.V.; Rauh, M.J.; Schmitt, L.C.; Ford, K.R.; Hewett, T.E. Incidence of Contralateral and Ipsilateral Anterior Cruciate Ligament (ACL) Injury After Primary ACL Reconstruction and Return to Sport. Clin. J. Sport Med. 2012, 22, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Brophy, R.H.; Schmitz, L.; Wright, R.W.; Dunn, W.R.; Parker, R.D.; Andrish, J.T.; McCarty, E.C.; Spindler, K.P. Return to Play and Future ACL Injury Risk After ACL Reconstruction in Soccer Athletes from the Multicenter Orthopaedic Outcomes Network (MOON) Group. Am. J. Sports Med. 2012, 40, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, N.F.N.; Meeuwisse, W.H.; Mendonça, L.D.; Nettel-Aguirre, A.; Ocarino, J.M.; Fonseca, S.T. Complex Systems Approach for Sports Injuries: Moving from Risk Factor Identification to Injury Pattern Recognition—Narrative Review and New Concept. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Paterno, M.V.; Quatman, C.E. Mechanisms, Prediction, and Prevention of ACL Injuries: Cut Risk with Three Sharpened and Validated Tools: ACL INJURY PREVENTION. J. Orthop. Res. 2016, 34, 1843–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welling, W.; Benjaminse, A.; Seil, R.; Lemmink, K.; Zaffagnini, S.; Gokeler, A. Low Rates of Patients Meeting Return to Sport Criteria 9 Months after Anterior Cruciate Ligament Reconstruction: A Prospective Longitudinal Study. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3636–3644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dingenen, B.; Gokeler, A. Optimization of the Return-to-Sport Paradigm After Anterior Cruciate Ligament Reconstruction: A Critical Step Back to Move Forward. Sports Med. 2017, 47, 1487–1500. [Google Scholar] [CrossRef]
- Bell, D.R.; Trigsted, S.M.; Post, E.G.; Walden, C.E. Hip Strength in Patients with Quadriceps Strength Deficits after ACL Reconstruction. Med. Sci. Sports Exerc. 2016, 48, 1886–1892. [Google Scholar] [CrossRef] [Green Version]
- Šarabon, N.; Kozinc, Z.; Bishop, C.; Maffiuletti, N.A. Factors Influencing Bilateral Deficit and Inter-Limb Asymmetry of Maximal and Explosive Strength: Motor Task, Outcome Measure and Muscle Group. Eur. J. Appl. Physiol. 2020, 120, 1681–1688. [Google Scholar] [CrossRef]
- Barber-Westin, S.D.; Noyes, F.R. Factors Used to Determine Return to Unrestricted Sports Activities after Anterior Cruciate Ligament Reconstruction. Arthrosc. J. Arthrosc. Relat. Surg. 2011, 27, 1697–1705. [Google Scholar] [CrossRef]
- The Panther Symposium ACL Injury Return to Sport Consensus Group; Meredith, S.J.; Rauer, T.; Chmielewski, T.L.; Fink, C.; Diermeier, T.; Rothrauff, B.B.; Svantesson, E.; Senorski, E.H.; Hewett, T.E.; et al. Return to Sport after Anterior Cruciate Ligament Injury: Panther Symposium ACL Injury Return to Sport Consensus Group. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 2403–2414. [Google Scholar] [CrossRef] [PubMed]
- Grindem, H.; Snyder-Mackler, L.; Moksnes, H.; Engebretsen, L.; Risberg, M.A. Simple Decision Rules Can Reduce Reinjury Risk by 84% after ACL Reconstruction: The Delaware-Oslo ACL Cohort Study. Br. J. Sports Med. 2016, 50, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Nagelli, C.V.; Hewett, T.E. Should Return to Sport Be Delayed Until 2 Years After Anterior Cruciate Ligament Reconstruction? Biological and Functional Considerations. Sports Med. 2017, 47, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Moran, R.W.; Schneiders, A.G.; Mason, J.; Sullivan, S.J. Do Functional Movement Screen (FMS) Composite Scores Predict Subsequent Injury? A Systematic Review with Meta-Analysis. Br. J. Sports Med. 2017, 51, 1661–1669. [Google Scholar] [CrossRef]
- Hewett, T.E.; Ford, K.R.; Myer, G.D. Anterior Cruciate Ligament Injuries in Female Athletes: Part 2, a Meta-Analysis of Neuromuscular Interventions Aimed at Injury Prevention. Am. J. Sports Med. 2006, 34, 490–498. [Google Scholar] [CrossRef]
- Webster, K.E.; Hewett, T.E. Meta-Analysis of Meta-Analyses of Anterior Cruciate Ligament Injury Reduction Training Programs: Effectiveness of ACL Injury Reduction Training Programs. J. Orthop. Res. 2018, 36, 2696–2708. [Google Scholar] [CrossRef]
- van Melick, N.; van Cingel, R.E.H.; Brooijmans, F.; Neeter, C.; van Tienen, T.; Hullegie, W.; Nijhuis-van der Sanden, M.W.G. Evidence-Based Clinical Practice Update: Practice Guidelines for Anterior Cruciate Ligament Rehabilitation Based on a Systematic Review and Multidisciplinary Consensus. Br. J. Sports Med. 2016, 50, 1506–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, G.J.; McCarty, E.; Provencher, M.; Manske, R.C. ACL Return to Sport Guidelines and Criteria. Curr. Rev. Musculoskelet. Med. 2017, 10, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Webster, K.E.; Hewett, T.E. What Is the Evidence for and Validity of Return-to-Sport Testing after Anterior Cruciate Ligament Reconstruction Surgery? A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Capin, J.J.; Snyder-Mackler, L.; Risberg, M.A.; Grindem, H. Keep Calm and Carry on Testing: A Substantive Reanalysis and Critique of ‘What Is the Evidence for and Validity of Return-to-Sport Testing after Anterior Cruciate Ligament Reconstruction Surgery? A Systematic Review and Meta-Analysis’. Br. J. Sports Med. 2019, 53, 1444–1446. [Google Scholar] [CrossRef] [PubMed]
- Kyritsis, P.; Bahr, R.; Landreau, P.; Miladi, R.; Witvrouw, E. Likelihood of ACL Graft Rupture: Not Meeting Six Clinical Discharge Criteria before Return to Sport Is Associated with a Four Times Greater Risk of Rupture. Br. J. Sports Med. 2016, 50, 946–951. [Google Scholar] [CrossRef]
- Petersen, W.; Taheri, P.; Forkel, P.; Zantop, T. Return to Play Following ACL Reconstruction: A Systematic Review about Strength Deficits. Arch. Orthop. Trauma Surg. 2014, 134, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Abourezk, M.N.; Ithurburn, M.P.; McNally, M.P.; Thoma, L.M.; Briggs, M.S.; Hewett, T.E.; Spindler, K.P.; Kaeding, C.C.; Schmitt, L.C. Hamstring Strength Asymmetry at 3 Years After Anterior Cruciate Ligament Reconstruction Alters Knee Mechanics During Gait and Jogging. Am. J. Sports Med. 2017, 45, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Ithurburn, M.P.; Altenburger, A.R.; Thomas, S.; Hewett, T.E.; Paterno, M.V.; Schmitt, L.C. Young Athletes after ACL Reconstruction with Quadriceps Strength Asymmetry at the Time of Return-to-Sport Demonstrate Decreased Knee Function 1 Year Later. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L.C.; Paterno, M.V.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Strength Asymmetry and Landing Mechanics at Return to Sport after Anterior Cruciate Ligament Reconstruction. Med. Sci. Sports Exerc. 2015, 47, 1426–1434. [Google Scholar] [CrossRef] [Green Version]
- Kotsifaki, A.; Korakakis, V.; Graham-Smith, P.; Sideris, V.; Whiteley, R. Vertical and Horizontal Hop Performance: Contributions of the Hip, Knee, and Ankle. Sports Health 2021, 13, 128–135. [Google Scholar] [CrossRef]
- Sapega, A.A. Muscle Performance Evaluation in Orthopaedic Practice. J. Bone Jt. Surg. 1990, 72, 1562–1574. [Google Scholar] [CrossRef]
- Chmielewski, T.L.; Stackhouse, S.; Axe, M.J.; Snyder-Mackler, L. A Prospective Analysis of Incidence and Severity of Quadriceps Inhibition in a Consecutive Sample of 100 Patients with Complete Acute Anterior Cruciate Ligament Rupture. J. Orthop. Res. 2004, 22, 925–930. [Google Scholar] [CrossRef]
- Hart, J.M.; Pietrosimone, B.; Hertel, J.; Ingersoll, C.D. Quadriceps Activation Following Knee Injuries: A Systematic Review. J. Athl. Train. 2010, 45, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Wilk, K.E. We Can Do Better. J. Orthop. Sports Phys. Ther. 2014, 44, 634–635. [Google Scholar] [CrossRef] [Green Version]
- Riesterer, J.; Mauch, M.; Paul, J.; Gehring, D.; Ritzmann, R.; Wenning, M. Relationship between Pre- and Post-Operative Isokinetic Strength after ACL Reconstruction Using Hamstring Autograft. BMC Sports Sci. Med. Rehabil. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Piussi, R.; Broman, D.; Musslinder, E.; Beischer, S.; Thomeé, R.; Senorski, E.H. Recovery of Preoperative Absolute Knee Extension and Flexion Strength after ACL Reconstruction. BMC Sports Sci. Med. Rehabil. 2020, 12, 1–7. [Google Scholar] [CrossRef]
- Wellsandt, E.; Failla, M.J.; Snyder-Mackler, L. Limb Symmetry Indexes Can Overestimate Knee Function after Anterior Cruciate Ligament Injury. J. Orthop. Sports Phys. Ther. 2017, 47, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Czaplicki, A.; Jarocka, M.; Walawski, J. Isokinetic Identification of Knee Joint Torques before and after Anterior Cruciate Ligament Reconstruction. PLoS ONE 2015, 10, e0144283. [Google Scholar] [CrossRef] [Green Version]
- de Araujo Ribeiro Alvares, J.B.; Rodrigues, R.; de Azevedo Franke, R.; da Silva, B.G.C.; Pinto, R.S.; Vaz, M.A.; Baroni, B.M. Inter-Machine Reliability of the Biodex and Cybex Isokinetic Dynamometers for Knee Flexor/Extensor Isometric, Concentric and Eccentric Tests. Phys. Ther. Sport 2015, 16, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.Z. Sample Size Calculator. Available online: https://www.gigacalculator.com/calculators/power-sample-size-calculator.php (accessed on 15 February 2021).
- Herbert, R. Confidence Interval Calculator. 2013. Available online: https://pedro.org.au/english/resources/confidence-interval-calculator/ (accessed on 15 February 2021).
- Trevethan, R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front. Public Health 2017, 5, 307. [Google Scholar] [CrossRef]
- Sanders, T.L.; Kremers, H.M.; Bryan, A.J.; Larson, D.R.; Dahm, D.L.; Levy, B.A.; Stuart, M.J.; Krych, A.J. Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study. Am. J. Sports Med. 2016, 44, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- De Jong, S.N.; van Caspel, D.R.; van Haeff, M.J.; Saris, D.B.F. Functional Assessment and Muscle Strength Before and After Reconstruction of Chronic Anterior Cruciate Ligament Lesions. Arthrosc. J. Arthrosc. Relat. Surg. 2007, 23, 21.e1–21.e11. [Google Scholar] [CrossRef] [PubMed]
- Shaarani, S.R.; O’Hare, C.; Quinn, A.; Moyna, N.; Moran, R.; O’Byrne, J.M. Effect of Prehabilitation on the Outcome of Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2013, 41, 2117–2127. [Google Scholar] [CrossRef]
- Ebert, J.R.; Edwards, P.; Yi, L.; Joss, B.; Ackland, T.; Carey-Smith, R.; Buelow, J.-U.; Hewitt, B. Strength and Functional Symmetry Is Associated with Post-Operative Rehabilitation in Patients Following Anterior Cruciate Ligament Reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 2353–2361. [Google Scholar] [CrossRef] [PubMed]
- Welling, W.; Benjaminse, A.; Lemmink, K.; Dingenen, B.; Gokeler, A. Progressive Strength Training Restores Quadriceps and Hamstring Muscle Strength within 7 Months after ACL Reconstruction in Amateur Male Soccer Players. Phys. Ther. Sport 2019, 40, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Hadžić, V.; Erulj, F.; Brai, M.; Dervi, E. Bilateral Concentric and Eccentric Isokinetic Strength Evaluation of Quadriceps and Hamstrings in Basketball Players. Coll. Antropol. 2013, 37, 859–865. [Google Scholar]
Factor | All (n = 63) | No secondary Injury (n = 51) | Secondary Injury (n = 12) | Difference between Groups |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | p Value | |
Age (yrs) | 34.7 (12.3) | 36.2 (12.1) | 28.3 (11.7) | 0.045* |
Body Mass (kg) | 76.7 (17.3) | 76.1 (18.8) | 79.0 (10.0) | 0.611 |
Body Height (cm) | 174.9 (0.1) | 174.0 (8.7) | 178.6 (9.6) | 0.112 |
Body mass index (kg/m2) | 24.9 (4.4) | 24.9 (4.8) | 24.7 (1.9) | 0.888 |
Tegner Activity score | 6.7 (1.5) | 6.5 (1.4) | 7.2 (1.6) | 0.064 |
Gender, male/female, n | 37/26 | 29/22 | 8/4 | 0.535 |
Time from injury to surgery (months) | 8.5 (9.03) | 11 (10.01) | 3.4 (2.3) | 0.001 * |
Extension | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Preoperative | Postoperative | |||||||||
Group | n | Peak Torque—ACL Injury | Peak Torque—Uninvolved | LSI | Peak Torque—ACLR | Peak Torque—Uninvolved | LSI | EPIC | EPIC-H | |
All | 63 | Mean (SD) | 161,8 (58.2) | 200.3 (63.9) | 82.4 (19.3) | 149.2 (52.9) | 198.8 (57.5) | 78.7 (14.3) | 75.5 (16.8) | 96.1 (13.6) |
No secondary injury | 51 | Mean (SD) | 159.9 (59.0) | 186.3 (55.1) | 87.1 (17.7) | 144.04 (53.1) | 183.9 (56.6) | 78.3 (15.0) | 77.7 (17.4) | 99.34 (12.9) |
Secondary injury | 12 | Mean (SD) | 170.0 (56.1) | 259.9 (66.6) | 65.8 (15.2) | 170.9 (47.9) | 214.6 (56.6) | 80.3 (11.3) | 66.0 (9.1) | 82.5 (5.9) |
Sig. (p value) | 0.593 | <0.001 * | 0.001 * | 0.114 | 0.096 | 0.663 | 0.028 * | <0.001 * |
Flexion | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Preoperative | Postoperative | |||||||||
Group | n | Peak Torque—ACL Injury | Peak Torque—Uninvolved | LSI | Peak Torque—ACLR | Peak Torque—Uninvolved | LSI | EPIC | EPIC-H | |
All | 63 | Mean (SD) | 120.1 (36.3) | 126.8 (42.0) | 96.9 (19.2) | 116.1 (34.9) | 123.0 (38.2) | 93.0 (14.0) | 94.4 (18.6) | 102.0 (13.9) |
No secondary injury | 51 | Mean (SD) | 116.4 (34.5) | 121.0 (37.9) | 98.4 (18.8) | 113.6 (35.7) | 123.7 (37.1) | 92.6 (12.6) | 96.1 (19.0) | 104.0 (16.2) |
Secondary injury | 12 | Mean (SD) | 135.8 (41.3) | 151.5 (50.6) | 91.6 (13.9) | 126.4 (30.7) | 137.8 (42.4) | 94.6 (19.4) | 87.0 (15.6) | 93.6 (16.8) |
Sig. (p value) | 0.097 | 0.022 * | 0.222 | 0.258 | 0.251 | 0.664 | 0.127 | 0.052 |
Patient | Time from ACLR to Secondary ACL Injury, wk | LSIe Preoperative | LSIe Postoperative | EPICe | Side of Injury |
---|---|---|---|---|---|
1 | 220 | 60 | 64 | 56 | ipsilateral |
2 | 215 | 80 | 95 | 74 | ipsilateral |
3 | 58 | 62 | 84 | 72 | ipsilateral |
4 | 101 | 90 | 100 | 82 | ipsilateral |
5 | 39 | 43 | 75 | 64 | ipsilateral |
6 | 146 | 46 | 80 | 64 | ipsilateral |
7 | 92 | 51 | 72 | 65 | ipsilateral |
8 | 38 | 78 | 80 | 64 | ipsilateral |
9 | 42 | 56 | 78 | 58 | contralateral |
10 | 50 | 72 | 62 | 58 | ipsilateral |
11 | 246 | 80 | 90 | 81 | contralateral |
12 | 193 | 77 | 82 | 63 | ipsilateral |
LSIe Preop | LSIf Preop | LSIe Postop | LSIf Postop | EPICe | EPICf | |
---|---|---|---|---|---|---|
Sensitivity | 0.92 | 0.5 | 0.75 | 0.5 | 1 | 0.5 |
95% CI | 0.65–0.99 | 0.25–0.75 | 0.47–0.91 | 0.43–0.69 | 0.76–1 | 0.25–0.75 |
Specificity | 0.41 | 0.68 | 0.21 | 0.57 | 0.15 | 0.68 |
95% CI | 0.29–0.55 | 0.55–0.80 | 0.12–0.35 | 0.61–2.22 | 0.08–0.28 | 0.55–0.80 |
Positive LR | 1.55 | 1.95 | 0.956 | 1.15 | 1.18 | 1.59 |
95% CI | 1.17–2.07 | 0.79–3.20 | 0.67–1.37 | 0.48 -1.63 | 1.05–1.34 | 0.79–3.20 |
Negative LR | 0.20 | 0.72 | 0.159 | 0.87 | 0 | 0.72 |
95% CI | 0.03–1.36 | 0.40–1.32 | 0.38–3.52 | 0.37–4.65 | - | 0.40–1.32 |
PPV | 0.26 | 0.27 | 0.18 | 0.21 | 0.23 | 0.27 |
NPV | 0.95 | 0.85 | 0.87 | 0.82 | 1 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zore, M.R.; Kregar Velikonja, N.; Hussein, M. Pre- and Post-Operative Limb Symmetry Indexes and Estimated Preinjury Capacity Index of Muscle Strength as Predictive Factors for the Risk of ACL Reinjury: A Retrospective Cohort Study of Athletes after ACLR. Appl. Sci. 2021, 11, 3498. https://doi.org/10.3390/app11083498
Zore MR, Kregar Velikonja N, Hussein M. Pre- and Post-Operative Limb Symmetry Indexes and Estimated Preinjury Capacity Index of Muscle Strength as Predictive Factors for the Risk of ACL Reinjury: A Retrospective Cohort Study of Athletes after ACLR. Applied Sciences. 2021; 11(8):3498. https://doi.org/10.3390/app11083498
Chicago/Turabian StyleZore, Martin Rudolf, Nevenka Kregar Velikonja, and Mohsen Hussein. 2021. "Pre- and Post-Operative Limb Symmetry Indexes and Estimated Preinjury Capacity Index of Muscle Strength as Predictive Factors for the Risk of ACL Reinjury: A Retrospective Cohort Study of Athletes after ACLR" Applied Sciences 11, no. 8: 3498. https://doi.org/10.3390/app11083498
APA StyleZore, M. R., Kregar Velikonja, N., & Hussein, M. (2021). Pre- and Post-Operative Limb Symmetry Indexes and Estimated Preinjury Capacity Index of Muscle Strength as Predictive Factors for the Risk of ACL Reinjury: A Retrospective Cohort Study of Athletes after ACLR. Applied Sciences, 11(8), 3498. https://doi.org/10.3390/app11083498