Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm
Abstract
:1. Introduction
2. Design of Experiment and Data
3. Methodology
3.1. Gaussian Process Regression (GPR)
3.2. Artificial Neural Networks (ANN)
3.3. Support Vector Machine
3.4. Performance Metrics
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Resultant force (N) | |
Feed force (N) | |
Tangential force (N) | |
Cutting speed (m/min) | |
Feed rate (mm/rev) | |
Depth of cut (mm) |
References
- Zhang, G.; Guo, C. Modeling flank wear progression based on cutting force and energy prediction in turning process. Procedia Manufact. 2016, 5, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Suhil, H.; Ismail, N. Optimization of Cutting Parameters of Turning Operations by using Geometric Programming. Am. J. Eng. Appl. Sci. 2010, 3, 102–108. [Google Scholar]
- Bera, T.C.; Manikandan, H.; Bansal, A.; Nema, D. A Method to Determine Cutting Force Coefficients in Turning Using Mechanistic Approach. Int. J. Mater. Mech. Manuf. 2018, 6, 99–103. [Google Scholar]
- Korkmaz, M.E.; Günay, M. Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel. Arab. J. Sci. Eng. 2018, 43, 4863–4870. [Google Scholar] [CrossRef]
- Thangarasu, S.K.; Shankar, S.; Tony Thomas, A.; Sridhar, G. Prediction of Cutting Force in Turning Process-an Ex-perimental Approach. IOP Conf. Ser. Mater. Sci. Eng. 2018, 310, 012119. [Google Scholar] [CrossRef]
- Cica, D.; Sredanovic, B.; Lakic-Globocki, G.; Kramar, D. Modeling of the Cutting Forces in Turning Process Using Various Methods of Cooling and Lubricating: An Artificial Intelligence Approach. Adv. Mech. Eng. 2013, 13, 1–8. [Google Scholar] [CrossRef]
- Altintas, Y. Manufacturing Automation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Hanief, M.; Wani, M.; Charoo, M. Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis. Eng. Sci. Technol. Int. J. 2017, 20, 1220–1226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Guo, C. Modeling of Cutting Force Distribution on Tool Edge in Turning Process. Procedia Manuf. 2015, 1, 454–465. [Google Scholar] [CrossRef] [Green Version]
- Fodor, G.; Sykora, H.T.; Bachrathy, D. Stochastic modeling of the cutting force in turning processes. Int. J. Adv. Manuf. Technol. 2020, 111, 213–226. [Google Scholar] [CrossRef]
- Zerti, A.; Yallese, M.A.; Meddour, I.; Belhadi, S.; Haddad, A.; Mabrouki, T. Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations. Int. J. Adv. Manuf. Technol. 2018, 102, 135–157. [Google Scholar] [CrossRef]
- Tzotzis, A.; García-Hernández, C.; Huertas-Talón, J.-L.; Kyratsis, P. Influence of the Nose Radius on the Machining Forces Induced during AISI-4140 Hard Turning: A CAD-Based and 3D FEM Approach. Micromachines 2020, 11, 798. [Google Scholar] [CrossRef]
- Patel, V.D.; Gandhi, A.H. Modeling of cutting forces considering progressive flank wear in finish turning of hardened AISI D2 steel with CBN tool. Int. J. Adv. Manuf. Technol. 2019, 104, 503–516. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, P.; Misra, J.P. Cutting force predictive modelling of hard turning operation using fuzzy logic. Mater. Today Proc. 2020, 26, 740–744. [Google Scholar] [CrossRef]
- Qiu, J. Modeling of cutting force coefficients in cylindrical turning process based on power measurement. Int. J. Adv. Manuf. Technol. 2018, 99, 1–11. [Google Scholar] [CrossRef]
- Imani, L.; Henzaki, A.R.; Hamzeloo, R.; Davoodi, B. Modeling and optimizing of cutting force and surface roughness in milling process of Inconel 738 using hybrid ANN and GA. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 920–932. [Google Scholar] [CrossRef]
- Chen, N.; Hao, B.; Guo, Y.; Li, L.; Khan, M.A.; He, N. Research on tool wear monitoring in drilling process based on APSO-LS-SVM approach. Int. J. Adv. Manuf. Technol. 2020, 108, 2091–2101. [Google Scholar] [CrossRef]
- Pandiyan, V.; Caesarendra, W.; Tjahjowidodo, T.; Tan, H.H. In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. J. Manuf. Process. 2018, 31, 199–213. [Google Scholar] [CrossRef]
- Plaza, E.G.; López, P.J.N.; González, E.M.B. Multi-Sensor Data Fusion for Real-Time Surface Quality Control in Automated Machining Systems. Sensors 2018, 18, 4381. [Google Scholar] [CrossRef] [Green Version]
- Garciaplaza, E.; Núñez, P.; Salgado, D.; Cambero, I.; Olivenza, J.H.; Sanz-Calcedo, J.G. Surface Finish Monitoring in Taper Turning CNC Using Artificial Neural Network and Multiple Regression Methods. Procedia Eng. 2013, 63, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Patole, P.; Kulkarni, V. Optimization of Process Parameters based on Surface Roughness and Cutting Force in MQL Turning of AISI 4340 using Nano Fluid. Mater. Today Proc. 2018, 5, 104–112. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: New York, NY, USA, 2006. [Google Scholar]
- Nguyen-Tuong, D.; Seeger, M.; Peters, J. Model Learning with Local Gaussian Process Regression. Adv. Robot. 2009, 23, 2015–2034. [Google Scholar] [CrossRef] [Green Version]
- Grbić, R.; Kurtagić, D.; Slišković, D. Stream water temperature prediction based on Gaussian process regression. Expert Syst. Appl. 2013, 40, 7407–7414. [Google Scholar] [CrossRef]
- Gopal, M. Applied Machine Learning; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp. 63–71. [Google Scholar]
- Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45. [Google Scholar] [CrossRef] [Green Version]
Parameter | Range |
---|---|
Cutting speed (m/min) | 75, 90 |
Feed rate (mm/rev) | 0.04, 0.06, 0.08, 0.1, 0.12 |
Depth of cut (mm) | 0.5, 1, 1.5 |
Tool nose radius (mm) | 0.4, 0.8 |
Air pressure (bar) | 5 |
Fluid flow rate (mL/h) | 140 |
No. | Cutting Speed (m/min) | Nose Radius (mm) | Feed Rate (mm/rev) | Depth of Cut (mm) | Surface Roughness (μm) | Average Cutting Force (N) |
---|---|---|---|---|---|---|
1 | 75 | 0.8 | 0.04 | 1.5 | 1.01 | 22.45 |
2 | 75 | 0.8 | 0.04 | 1 | 1.06 | 15.52 |
3 | 75 | 0.8 | 0.04 | 0.5 | 1.26 | 7.67 |
4 | 75 | 0.8 | 0.06 | 1.5 | 1.24 | 33.21 |
5 | 75 | 0.8 | 0.06 | 1 | 1.32 | 23.15 |
6 | 75 | 0.8 | 0.06 | 0.5 | 1.35 | 11.7 |
7 | 75 | 0.8 | 0.08 | 1.5 | 1.42 | 39.85 |
8 | 75 | 0.8 | 0.08 | 1 | 1.5 | 28.07 |
9 | 75 | 0.8 | 0.08 | 0.5 | 1.61 | 13.58 |
10 | 75 | 0.8 | 0.1 | 1.5 | 1.6 | 45.42 |
11 | 75 | 0.8 | 0.1 | 1 | 1.64 | 32.82 |
12 | 75 | 0.8 | 0.1 | 0.5 | 1.75 | 16.94 |
13 | 75 | 0.8 | 0.12 | 1.5 | 1.7 | 52.26 |
14 | 75 | 0.8 | 0.12 | 1 | 1.78 | 37.25 |
15 | 75 | 0.8 | 0.12 | 0.5 | 1.88 | 19.15 |
16 | 90 | 0.8 | 0.04 | 1.5 | 1.29 | 20.72 |
17 | 90 | 0.8 | 0.04 | 1 | 1.37 | 14.14 |
18 | 90 | 0.8 | 0.04 | 0.5 | 1.4 | 7.81 |
19 | 90 | 0.8 | 0.06 | 1.5 | 1.41 | 31.38 |
20 | 90 | 0.8 | 0.06 | 1 | 1.5 | 21.45 |
21 | 90 | 0.8 | 0.06 | 0.5 | 1.56 | 10.66 |
22 | 90 | 0.8 | 0.08 | 1.5 | 1.67 | 39.14 |
23 | 90 | 0.8 | 0.08 | 1 | 1.72 | 28.21 |
24 | 90 | 0.8 | 0.08 | 0.5 | 1.8 | 14.74 |
25 | 90 | 0.8 | 0.1 | 1.5 | 1.78 | 44.22 |
26 | 90 | 0.8 | 0.1 | 1 | 1.82 | 31.56 |
27 | 90 | 0.8 | 0.1 | 0.5 | 1.93 | 16.52 |
28 | 90 | 0.8 | 0.12 | 1.5 | 1.93 | 50.61 |
29 | 90 | 0.8 | 0.12 | 1 | 2.02 | 36.72 |
30 | 90 | 0.8 | 0.12 | 0.5 | 2.16 | 19.46 |
31 | 75 | 0.4 | 0.04 | 1.5 | 1.09 | 22.56 |
32 | 75 | 0.4 | 0.04 | 1 | 1.21 | 15.16 |
33 | 75 | 0.4 | 0.04 | 0.5 | 1.5 | 6.62 |
34 | 75 | 0.4 | 0.06 | 1.5 | 1.12 | 31.44 |
35 | 75 | 0.4 | 0.06 | 1 | 1.32 | 21.19 |
36 | 75 | 0.4 | 0.06 | 0.5 | 1.64 | 9.71 |
37 | 75 | 0.4 | 0.08 | 1.5 | 1.15 | 38.82 |
38 | 75 | 0.4 | 0.08 | 1 | 1.4 | 27.5 |
39 | 75 | 0.4 | 0.08 | 0.5 | 1.93 | 12.64 |
40 | 75 | 0.4 | 0.1 | 1.5 | 1.28 | 45.55 |
41 | 75 | 0.4 | 0.1 | 1 | 1.56 | 31.73 |
42 | 75 | 0.4 | 0.1 | 0.5 | 2.08 | 15.48 |
43 | 75 | 0.4 | 0.12 | 1.5 | 1.47 | 52.8 |
44 | 75 | 0.4 | 0.12 | 1 | 1.82 | 37.14 |
45 | 75 | 0.4 | 0.12 | 0.5 | 2.32 | 17.57 |
46 | 90 | 0.4 | 0.04 | 1.5 | 2.07 | 22.78 |
47 | 90 | 0.4 | 0.04 | 1 | 1.42 | 14.56 |
48 | 90 | 0.4 | 0.04 | 0.5 | 1.75 | 6.87 |
49 | 90 | 0.4 | 0.06 | 1.5 | 2.22 | 30.81 |
50 | 90 | 0.4 | 0.06 | 1 | 1.5 | 20.5 |
51 | 90 | 0.4 | 0.06 | 0.5 | 1.88 | 10.2 |
52 | 90 | 0.4 | 0.08 | 1.5 | 2.31 | 39.8 |
53 | 90 | 0.4 | 0.08 | 1 | 1.67 | 27.48 |
54 | 90 | 0.4 | 0.08 | 0.5 | 2.15 | 13.44 |
55 | 90 | 0.4 | 0.1 | 1.5 | 2.52 | 46.15 |
56 | 90 | 0.4 | 0.1 | 1 | 1.82 | 31.88 |
57 | 90 | 0.4 | 0.1 | 0.5 | 2.28 | 16.25 |
58 | 90 | 0.4 | 0.12 | 1.5 | 2.9 | 51.12 |
59 | 90 | 0.4 | 0.12 | 1 | 2.07 | 36.57 |
60 | 90 | 0.4 | 0.12 | 0.5 | 2.52 | 18.7 |
Data | Actual | GPR | SVM | ANN |
---|---|---|---|---|
1 | 22.45 | 25.0529771 | 22.91932087 | 24.21418804 |
2 | 15.52 | 15.828919 | 15.70293258 | 16.36564709 |
3 | 7.67 | 8.53333862 | 9.021956651 | 11.80074896 |
4 | 33.21 | 31.2012136 | 29.84178436 | 30.80456182 |
5 | 23.15 | 22.089346 | 21.3083986 | 21.40719968 |
6 | 11.7 | 11.4624395 | 12.66595967 | 10.73101918 |
7 | 39.85 | 39.5438043 | 33.74027778 | 39.53554623 |
8 | 28.07 | 28.0919717 | 26.50360215 | 28.75123913 |
9 | 13.58 | 14.5048494 | 11.73586611 | 14.25102381 |
10 | 45.42 | 46.431982 | 43.07109445 | 48.09695993 |
11 | 32.82 | 32.7805683 | 30.06625841 | 34.06079817 |
12 | 16.94 | 17.0203249 | 17.81597692 | 18.50273521 |
13 | 52.26 | 48.0807784 | 44.70294639 | 43.76071549 |
14 | 37.25 | 35.2788251 | 33.20572228 | 33.3668117 |
15 | 19.15 | 22.0473817 | 19.52311889 | 22.06577018 |
16 | 20.72 | 24.4285024 | 23.10524016 | 23.62156834 |
17 | 14.14 | 15.4355581 | 14.98431965 | 14.48325075 |
18 | 7.81 | 7.64684253 | 8.267628928 | 10.59143006 |
19 | 31.38 | 31.093137 | 30.76954699 | 29.57011778 |
20 | 21.45 | 21.4600877 | 20.57752531 | 19.80906493 |
21 | 10.66 | 11.2552626 | 11.27866576 | 11.46983893 |
22 | 39.14 | 38.3636644 | 38.25223323 | 39.22916097 |
23 | 28.21 | 27.3290981 | 26.73283079 | 28.15712769 |
24 | 14.74 | 14.0246408 | 12.56687461 | 14.21767067 |
25 | 44.22 | 45.1105649 | 42.19021155 | 46.43950914 |
26 | 31.56 | 32.4718376 | 31.91753592 | 34.5871173 |
27 | 16.52 | 19.1383276 | 16.9789595 | 20.95898138 |
28 | 50.61 | 47.6740405 | 42.54547675 | 43.78563235 |
29 | 36.72 | 35.8412734 | 32.38550878 | 36.04813972 |
30 | 19.46 | 20.2009669 | 19.06031562 | 19.33064084 |
31 | 22.56 | 25.3868501 | 23.76891638 | 26.40105304 |
32 | 15.16 | 16.3210017 | 15.41406766 | 17.33112468 |
33 | 6.62 | 7.18989911 | 8.171158719 | 10.40235966 |
34 | 31.44 | 30.4522226 | 29.76639077 | 29.87597985 |
35 | 21.19 | 21.1824123 | 21.3083986 | 21.01016136 |
36 | 9.71 | 10.0628118 | 11.66739689 | 9.439559173 |
37 | 38.82 | 37.6892054 | 38.5617505 | 36.8477515 |
38 | 27.5 | 26.8557951 | 27.15839851 | 27.05053072 |
39 | 12.64 | 12.9071058 | 12.72158606 | 14.11821133 |
40 | 45.55 | 44.8192269 | 41.87706371 | 43.77448873 |
41 | 31.73 | 33.2514357 | 31.3627139 | 34.57937336 |
42 | 15.48 | 15.6544623 | 16.79119579 | 16.61167088 |
43 | 52.8 | 48.2831198 | 42.54547675 | 45.93563199 |
44 | 37.14 | 36.1242241 | 33.14722804 | 35.70802991 |
45 | 17.57 | 20.5531402 | 19.56785604 | 19.7815983 |
46 | 22.78 | 25.6403883 | 30.1046451 | 26.20319935 |
47 | 14.56 | 15.0127202 | 14.91622958 | 16.29281976 |
48 | 6.87 | 7.22640958 | 8.584091261 | 10.83896043 |
49 | 30.81 | 30.5587044 | 30.42904924 | 29.27838599 |
50 | 20.5 | 20.5362971 | 20.45468095 | 19.39878201 |
51 | 10.2 | 10.2576783 | 11.61973357 | 10.02784569 |
52 | 39.8 | 37.5289976 | 38.23346895 | 35.38788695 |
53 | 27.48 | 25.9991416 | 26.9948135 | 25.16690996 |
54 | 13.44 | 13.6138121 | 12.72158606 | 14.09786533 |
55 | 46.15 | 44.0283559 | 41.47029172 | 40.52117368 |
56 | 31.88 | 31.4100057 | 30.42133004 | 31.34682703 |
57 | 16.25 | 16.6632828 | 17.21730724 | 17.51374508 |
58 | 51.12 | 43.8205786 | 43.37659946 | 36.54195755 |
59 | 36.57 | 35.3314071 | 32.69978926 | 33.66115622 |
60 | 18.7 | 21.1436962 | 18.82467991 | 21.13694601 |
Indicator | GPR | SVM | ANN |
---|---|---|---|
STD | 11.8659845 | 10.8311621 | 10.9700107 |
MAPE | 5.12881818 | 7.91289907 | 10.8512889 |
MAE | 1.2790129 | 2.05869621 | 2.3533598 |
MSE | 3.46918946 | 9.43121873 | 11.1943294 |
RMSE | 1.86257603 | 3.07102894 | 3.34579279 |
CVRMSE | 15.6967677 | 28.353642 | 30.4994487 |
R2 | 0.9843 | 0.9711 | 0.9475 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alajmi, M.S.; Almeshal, A.M. Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm. Appl. Sci. 2021, 11, 4055. https://doi.org/10.3390/app11094055
Alajmi MS, Almeshal AM. Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm. Applied Sciences. 2021; 11(9):4055. https://doi.org/10.3390/app11094055
Chicago/Turabian StyleAlajmi, Mahdi S., and Abdullah M. Almeshal. 2021. "Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm" Applied Sciences 11, no. 9: 4055. https://doi.org/10.3390/app11094055
APA StyleAlajmi, M. S., & Almeshal, A. M. (2021). Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm. Applied Sciences, 11(9), 4055. https://doi.org/10.3390/app11094055