Robot-Assisted Upper Limb Training for Patients with Multiple Sclerosis: An Evidence-Based Review of Clinical Applications and Effectiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
- (P) Participants: PwMS
- (I) Intervention: Rehabilitation training with robotic-assisted device for upper limbs, with or without conventional therapy.
- (C) Comparator: Conventional rehabilitation.
- (O) Outcome measures: Safety of robotic rehabilitation, the feasibility of robotic rehabilitation, upper limb strength, functioning, independence in activity of daily living (ADL), and Health-related Quality of Life (HRQoL).
2.3. Data Extraction and Synthesis
2.4. Quality Assessment
3. Results
3.1. Effects of Upper Limb Robot-Assisted Therapy
3.2. Quality Assessment
3.3. Levels of Evidence
3.4. Adverse Effects
4. Discussion
5. Limits and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Group Name
References
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2002, 359, 1221–1231. [Google Scholar] [CrossRef]
- Johansson, S.; Ytterberg, C.; Claesson, I.M.; Lindberg, J.; Hillert, J.; Andersson, M.; Holmqvist, L.W.; von Koch, L. High concurrent presence of disability in multiple sclerosis Associations with perceived health. J. Neurol. 2007, 254, 767–773. [Google Scholar] [CrossRef]
- Thompson, A.J. Progress in neurorehabilitation in multiple sclerosis. Curr. Opin. Neurol. 2002, 15, 267–270. [Google Scholar] [CrossRef]
- Koch, M.; Mostert, J.; Heersema, D.; De Keyser, J. Tremor in multiple sclerosis. J. Neurol. 2007, 254, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Bertoni, R.; Lamers, I.; Chen, C.C.; Feys, P.; Cattaneo, D. Unilateral and bilateral upper limb dysfunction at body functions, activity and participation levels in people with multiple sclerosis. Mult. Scler. J. 2015, 21, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Lamers, I.; Cattaneo, D.; Chen, C.C.; Bertoni, R.; Van Wijmeersch, B.; Feys, P. Associations of upper limb disability measures on different levels of the international classification of functioning, disability and health in people with multiple sclerosis. Phys. Ther. 2015, 95, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, L.; Coscia, M.; Muller, M.; Solaro, C.; Casadio, M. Evaluating upper limb impairments in multiple sclerosis by exposure to different mechanical environments. Sci. Rep. 2018, 8, 2110. [Google Scholar] [CrossRef] [Green Version]
- Casadio, M.; Sanguineti, V.; Morasso, P.; Solaro, C. Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability. Mult. Scler. J. 2008, 14, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.M.; Allen, R. Quality of life in multiple sclerosis: Determinants, measurement, and use in clinical practice. Curr. Neurol. Neurosci. Rep. 2010, 10, 397–406. [Google Scholar] [CrossRef]
- Cattaneo, D.; Lamers, I.; Bertoni, R.; Feys, P.; Jonsdottir, J. Participation restriction in people with multiple sclerosis: Prevalence and correlations with cognitive, walking, balance, and upper limb impairments. Arch. Phys. Med. Rehabil. 2017, 98, 1308–1315. [Google Scholar] [CrossRef]
- Kierkegaard, M.; Einarsson, U.; Gottberg, K.; Von Koch, L.; Holmqvist, L.W. The relationship between walking, manual dexterity, cognition and activity/participation in persons with multiple sclerosis. Mult. Scler. J. 2011, 18, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Tomassini, V.; Matthews, P.M.; Thompson, A.; Fuglø, D.; Geurts, J.J.; Johansen-Berg, H.; Jones, D.K.; Rocca, M.A.; Wise, R.G.; Barkhof, F.; et al. Neuroplasticity and functional recovery in multiple sclerosis. Nat. Rev. Neurol. 2012, 8, 635–646. [Google Scholar] [CrossRef]
- Tomassini, V.; Johansen-Berg, H.; Leonardi, L.; Paixão, L.; Jbabdi, S.; Palace, J.; Pozzilli, C.; Matthews, P.M. Preservation of motor skill learning in patients with multiple sclerosis. Mult. Scler. J. 2010, 17, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Feys, P.; Straudi, S. Beyond therapists: Technology-aided physical MS rehabilitation delivery. Mult. Scler. J. 2019, 25, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Morone, G.; Cocchi, I.; Paolucci, S.; Iosa, M. Robot-assisted therapy for arm recovery for stroke patients: State of the art and clinical implication. Expert Rev. Med. Devices 2020, 17, 223–233. [Google Scholar] [CrossRef]
- Turner, D.L.; Murguialday, A.R.; Birbaumer, N.; Hoffmann, U.; Luft, A. Neurophysiology of robot-mediated training and therapy: A perspective for future use in clinical populations. Front. Neurol. 2013, 4, 184. [Google Scholar] [CrossRef] [Green Version]
- Huang, V.S.; Krakauer, W. Robotic neurorehabilitation. A computational motor learning prospective. J. Neuroeng. Rehabil. 2009, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2018, 9, CD006876. [Google Scholar] [CrossRef]
- Morone, G.; Palomba, A.; Martino Cinnera, A.; Agostini, M.; Aprile, I.; Arienti, C.; Paci, M.; Casanova, E.; Marino, D.; LARosa, G.; et al. Systematic review of guidelines to identify recommendations for upper limb robotic rehabilitation after stroke. Eur. J. Phys. Rehabil. Med. 2021, 57, 238–245. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Lin, L.-F.; Tam, K.-W.; Tsai, C.-P.; Hong, C.-H.; Kuan, Y.-C. Efficacy of robot-assisted gait training in multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2020, 41, 102034. [Google Scholar] [CrossRef] [PubMed]
- Spooren, A.I.; Timmermans, A.A.; Seelen, H.A. Motor training programs of arm and hand in patients with MS according to different levels of the ICF: A systematic review. BMC Neurol. 2012, 2, 12–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamers, I.; Maris, A.; Severijns, D.; Dielkens, W.; Geurts, S.; Van Wijmeersch, B.; Feys, P. Upper limb rehabilitation in people with multiple sclerosis. Neurorehabilit. Neural Repair 2016, 30, 773–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimigliano, F.; Palomba, A.; Arienti, C.; Morone, G.; Perrero, L.; Agostini, M.; Aprile, I.; Paci, M.; Casanova, E.; Marino, D.; et al. Robot-assisted arm therapy in neurological health conditions: Rationale and methodology for the evidence synthesis in the CICERONE Italian Consensus Conference. Eur. J. Phys. Rehabil. Med. 2021, 57, 824–830. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef] [Green Version]
- Moseley, A.M.; Herbert, R.; Sherrington, C.; Maher, C.G. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro). Aust. J. Physiother. 2002, 48, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Durieux, N.; Vandenput, S.; Pasleau, F. OCEBM levels of evidence system. Rev. Med. Liege 2013, 68, 644–649. [Google Scholar] [PubMed]
- Solaro, C.; Cattaneo, D.; Basteris, A.; Carpinella, I.; De Luca, A.; Mueller, M.; Bertoni, R.; Ferrarin, M.; Sanguineti, V. Haptic vs sensorimotor training in the treatment of upper limb dysfunction in multiple sclerosis: A multi-center, randomized controlled trial. J. Neurol. Sci. 2020, 412, 116743. [Google Scholar] [CrossRef]
- Gandolfi, M.; Valè, N.; Dimitrova, E.K.; Mazzoleni, S.; Battini, E.; Benedetti, M.D.; Gajofatto, A.; Ferraro, F.; Castelli, M.; Camin, M.; et al. Effects of high-intensity robot-assisted hand training on upper limb recovery and muscle activity in individuals with multiple sclerosis: A randomized, controlled, single-blinded trial. Front. Neurol. 2018, 9, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampson, P.; Freeman, C.; Coote, S.; Demain, S.; Feys, P.; Meadmore, K.; Hughes, A.-M. Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with multiple sclerosis. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 235–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feys, P.; Coninx, K.; Kerkhofs, L.; De Weyer, T.; Truyens, V.; Maris, A.; Lamers, I. Robot-supported upper limb training in a virtual learning environment: A pilot randomized controlled trial in persons with MS. J. Neuroeng. Rehabil. 2015, 12, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpinella, I.; Cattaneo, D.; Bertoni, R.; Ferrarin, M. Robot training of upper limb in mu tiple sclerosis: Comparing protocols with or without manipulative task components. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 351–360. [Google Scholar] [CrossRef]
- Gijbels, D.; Lamers, I.; Kerkhofs, L.; Alders, G.; Knippenberg, E.; Feys, P. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: A pilot study. J. Neuroeng. Rehabil. 2011, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergaro, E.; Squeri, V.; Brichetto, G.; Casadio, M.; Morasso, P.; Solaro, C.; Sanguineti, V. Adaptive robot training for the treatment of incoordination in Multiple Sclerosis. J. Neuroeng. Rehabil. 2010, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpinella, I.; Cattaneo, D.; Abuarqub, S.; Ferrarin, M. Robot-based rehabilitation of the upper limbs in multiple sclerosis: Feasibility and preliminary results. J. Rehabil. Med. 2009, 41, 966–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maris, A.; Coninx, K.; Seelen, H.; Truyens, V.; De Weyer, T.; Geers, R.; Lemmens, M.; Coolen, J.; Stupar, S.; Lamers, I.; et al. The impact of robot-mediated adaptive I-TRAVLE training on impaired upper limb function in chronic stroke and multiple sclerosis. Disabil. Rehabil. Assist. Technol. 2018, 13, 1–9. [Google Scholar] [CrossRef]
- Marrie, R.A.; Cutter, G.R.; Tyry, T.; Cofield, S.S.; Fox, R.; Salter, A. Upper limb impairment is associated with use of assistive devices and unemployment in multiple sclerosis. Mult. Scler. Relat. Disord. 2017, 13, 87–92. [Google Scholar] [CrossRef]
- Solaro, C.; Brichetto, G.; Casadio, M.; Roccatagliata, L.; Ruggiu, P.; Mancardi, G.L.; Morasso, P.; Tanganelli, P.; Sanguineti, V. Subtle upper limb impairment in asymptomatic multiple sclerosis subjects. Mult. Scler. J. 2007, 13, 428–432. [Google Scholar] [CrossRef]
- Pellegrino, L.; Stranieri, G.; Tiragallo, E.; Tacchino, A.; Brichetto, G.; Coscia, M.; Casadio, M. Analysis of upper limb movement in Multiple Sclerosis subjects during common daily actions. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 2015, 6967–6970. [Google Scholar] [CrossRef]
- Schoonheim, M.M.; Geurts, J.J.; Barkhof, F. The limits of functional reorganization in multiple sclerosis. Neurology 2010, 74, 1246–1247. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Study Design | Population | Intervention | Outcomes | CEBM Level of Evidence |
---|---|---|---|---|---|
Solaro et al., 2020 | RCT | 36 PwMS: 13 PP, 15 SP, 8 RR EDSS 5–6 | R: shoulder, elbow, forearm, wrist, robot-assisted with haptic exercises (Braccio di Ferro) C: shoulder, elbow, forearm, wrist, robot-assisted with sensorimotor exercises (Braccio di Ferro) D: 8 sessions, 2 sessions a week for 4 weeks. Sessions lasted40 min. | (+) 9HPT and robotic instrumental outcomes only for haptic group no between-groups differences | 2 |
Gandolfi et al., 2018 | RCT | 44 PwMS: 3 PP, 15 SP, 26 RR EDSS 6 | R: hand robot-assisted training (Amadeo®, Tyromotion, Austria) C: conventional therapy D: 10 sessions, 2 sessions a week for 5 weeks. Session lasting 50 min. | (+) MAL, LifeH and sEMG only for the hand-robot group no between-group differences | 2 |
Maris et al., 2018 | Case Series | 13 PwMS: 2 PP, 6 SP, 3 RR, 2 RP EDSS 6.5 | R: shoulder, elbow, forearm, wrist robot-assisted training (Haptic Master, MOOG, Netherlands) C: NA D: 40 sessions, 5 times a week for 8 weeks. Session lasting 30 min. | (+) shoulder ROM, handgrip strength, WMFT, robotic instrumental assessment | 4 |
Sampson et al., 2016 | Case Series | 5 PwMS: 1 PP, 3 SP, 1 RR EDSS NA | R: shoulder, elbow, forearm, wrist training (Armeo Spring, Hocoma, Switzerland) + FES C: NA D: 18 treatment sessions over a 10 weeks period. frequency not described | (+) FMA proximal arm section, the accuracy of tracking performance | 4 |
Feys et al., 2015 | RCT | 17 PwMS: 2 PP, 14 SP, 1 RR EDSS 8 | R: shoulder, elbow, forearm, wrist robot-assisted training + conventional multidisciplinary therapy (Haptic Master, MOOG, Netherlands) C: conventional multidisciplinary therapy D: 24 sessions, 3 times a week for 8 weeks. Session lasting 30 min of robotic therapy and 2 h of conventional therapy. | (+) patients’ reported beneficial changes in daily use, robotic instrumental assessment No between-group differences | 2 |
Carpinella et al., 2012 | RCT | 22 PwMS: 4 PP, 12 SP, 6 RR EDSS 6.7 | R: shoulder, elbow, forearm, wrist, robot-assisted reaching task (Braccio di Ferro) and object manipulation (RMT) C: shoulder, elbow, forearm, wrist, robot-assisted reaching task, RT (Braccio di Ferro) D: 8 sessions, 160 movements each session. Session lasting 30–45 min. | (+) grasp—ARAT, TSS RMT was superior to RT on grasp (ARAT) changes (p = 0.035) | 4 |
Gijbels et al., 2011 | Case Series | 9 PwMS: 3 PP, 6 SP EDSS 7–8.5 | R: shoulder, elbow, forearm, wrist passive training (Armeo Spring, Hocoma, Switzerland) + usual care C: NA D: 24 sessions, 3 times per week for 8 weeks, 30 min/session | (+) 9HPT, TEMPA (+) TEMPA, ARAT at 2 months follow-up | 4 |
Vergaro et al., 2010 | Randomized Double-Blind Crossover Design | 8 PwMS: 6 SP, 2 RREDSS 5 Cerebellar deficits | R: shoulder, elbow, forearm, wrist robot-assisted training (Braccio di Ferro) with error-enhancing (EE) forces C: shoulder, elbow, forearm, wrist robot-assisted training (Braccio di Ferro) with error-reducing (ER) D: 8 sessions (4 EE, 4 ER), 2 times a week for 4 weeks, 498 movements each session. Session lasting 60 min. | (+) TADL in the first 4 sessions only in the EE group No between-group differences | 4 |
Carpinella et al., 2009 | Case Series | 7 PwMS: 1 PP, 4 SP, 2 RR EDSS 4.5–6.5 | R: shoulder, elbow, wrist shoulder, elbow, forearm, wrist, robot-assisted reaching task (Braccio di Ferro) C: NA D: 8 sessions, 5 times a week, 200 movements each session. | (+) 9HPT and robotic instrumental assessment | 4 |
Lamers et al., 2016 | Systematic Review | 41 PwMS (4 studies) | 30 included studies, of which only 4 used robotics | Robotic training is the most studied rehabilitation strategy in the field of upper limb rehabilitation in PwMS. The included studies (RCT and non-controlled trials) have shown that robotic training may improve motor coordination, manual dexterity and upper limb functionality in PwMS. | 2 |
Author, Year | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | PEDro Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C. Solaro et al., 2020 | Y | Y | N | N | Y | N | Y | Y | N | Y | Y | 6 |
Gandolfi et al., 2018 | Y | Y | Y | Y | N | N | Y | Y | N | Y | Y | 7 |
Feys et al., 2015 | Y | Y | Y | Y | N | N | N | Y | Y | Y | Y | 7 |
Carpinella et al., 2012 | Y | Y | N | N | N | Y | Y | Y | Y | Y | Y | 7 |
Vergaro et al., 2010 | Y | Y | N | N | Y | N | Y | Y | Y | Y | Y | 7 |
Author, Year | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | Q15 | Q16 | AMSTAR 2 Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lamers et al., 2016 | Y | N | N | PY | Y | Y | N | PY | N | N | NMC | NMC | N | N | NMC | Y | Critically low quality |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straudi, S.; Tramontano, M.; Russo, E.F.; Perrero, L.; Agostini, M.; Gandolfi, M.; Aprile, I.; Paci, M.; Casanova, E.; Marino, D.; et al. Robot-Assisted Upper Limb Training for Patients with Multiple Sclerosis: An Evidence-Based Review of Clinical Applications and Effectiveness. Appl. Sci. 2022, 12, 222. https://doi.org/10.3390/app12010222
Straudi S, Tramontano M, Russo EF, Perrero L, Agostini M, Gandolfi M, Aprile I, Paci M, Casanova E, Marino D, et al. Robot-Assisted Upper Limb Training for Patients with Multiple Sclerosis: An Evidence-Based Review of Clinical Applications and Effectiveness. Applied Sciences. 2022; 12(1):222. https://doi.org/10.3390/app12010222
Chicago/Turabian StyleStraudi, Sofia, Marco Tramontano, Emanuele Francesco Russo, Luca Perrero, Michela Agostini, Marialuisa Gandolfi, Irene Aprile, Matteo Paci, Emanuela Casanova, Dario Marino, and et al. 2022. "Robot-Assisted Upper Limb Training for Patients with Multiple Sclerosis: An Evidence-Based Review of Clinical Applications and Effectiveness" Applied Sciences 12, no. 1: 222. https://doi.org/10.3390/app12010222
APA StyleStraudi, S., Tramontano, M., Russo, E. F., Perrero, L., Agostini, M., Gandolfi, M., Aprile, I., Paci, M., Casanova, E., Marino, D., La Rosa, G., Bressi, F., Sterzi, S., Giansanti, D., Battistini, A., Miccinilli, S., Filoni, S., Sicari, M., Petrozzino, S., ... Working Group Upper Limb “CICERONE” Italian Consensus Conference on Robotic Rehabilitation. (2022). Robot-Assisted Upper Limb Training for Patients with Multiple Sclerosis: An Evidence-Based Review of Clinical Applications and Effectiveness. Applied Sciences, 12(1), 222. https://doi.org/10.3390/app12010222