A Method for Correcting the Interference of Overlapping Absorption Lines Using Second Harmonic Spectral Reconstruction
Abstract
:Featured Application
Abstract
1. Introduction
2. Error Analysis of Overlapping Absorption Lines
3. Method
4. Simulation
Effect of Laser Characteristics on Overlapping Absorption Lines
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wysocki, G.; Bakhirkin, Y.; So, S.; Tittel, F.K.; Fraser, M.P. Dual interband cascade laser based trace-gas sensor for environmental monitoring. Appl. Opt. 2007, 46, 8202–8210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.J. Atmospheric and environmental sensing by photonic absorption spectroscopy. Proc. SPIE Int. Soc. Opt. Eng. 2013, 8631, 65–68. [Google Scholar]
- Luo, Q.; Song, C.; Yang, C.; Gui, W.; Sun, Y.; Jeffrey, Z. Headspace oxygen concentration measurement for pharmaceutical glass bottles in open-path optical environment using TDLAS/WMS. IEEE Trans. Instrum. Meas. 2020, 69, 5828–5842. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Yao, S.; Ren, W.; Lu, Z.; Li, Z. TDLAS monitoring of carbon dioxide with temperature compensation in power plant exhausts. Appl. Sci. 2019, 9, 442. [Google Scholar] [CrossRef] [Green Version]
- Nwaboh, J.A.; Qu, Z.; Werhahn, O.; Ebert, V. Towards an optical gas standard for traceable calibration-free and direct NO2 concentration measurements. Appl. Sci. 2021, 11, 5361. [Google Scholar] [CrossRef]
- Swann, W.C.; Gilbert, S.L. Pressure-induced shift and broadening of 1560–1630-nm carbon monoxide wavelength-calibration lines. J. Opt. Soc. Am. B 2002, 19, 2461–2467. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, G.Y.; Qu, D.S. Modeling and simulation of mass flow Measurement Process by TDLAS. Adv. Mater. Res. 2013, 631–632, 1032–1036. [Google Scholar] [CrossRef]
- Buchholz, B.; Afchine, A.; Ebert, V. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS. Atmos. Meas. Tech. 2014, 7, 3653–3666. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, M.; Jin, W. Multi-point, fiber-optic gas detection with intra-cavity spectroscopy. Opt. Commun. 2003, 220, 361–364. [Google Scholar] [CrossRef]
- Zhang, H.W.; Lu, Y.; Duan, L.C.; Zhao, Z.Q.; Shi, W.; Yao, J.Q. Intracavity absorption multiplexed sensor network based on dense wavelength divisionmultiplexing filter. Opt. Express 2014, 22, 24545–24550. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Chen, C.; Wang, Y.Z.; Li, C.G.; Wang, Y.D. A prototype of ppbv-level midinfrared CO2 sensor for potential application in deep-sea natural gas hydrate exploration. IEEE Trans. Instrum. Meas. 2020, 69, 7200–7208. [Google Scholar] [CrossRef]
- Yu, L.; Liu, T.G.; Liu, K.; Jiang, J.F.; Zhang, L.; Jia, Y.W.; Wang, T. Development of anintra-cavity gas detection system based on L-band erbium-doped fiber ringlaser. Sens. Actuators B 2014, 193, 356–362. [Google Scholar] [CrossRef]
- Kochanov, V.P.; Morino, I. Methane line shapes and spectral line parameters in the 5647–6164 cm−1 region. J. Quant. Spectrosc. Radiat. Transf. 2018, 206, 313–322. [Google Scholar] [CrossRef]
- Lacis, A.A.; Schmidt, G.A.; Ring, D.; Ruedy, R.A. Atmospheric CO2: Principal control knob governing earth’s temperature. Science 2010, 330, 356–359. [Google Scholar] [CrossRef] [Green Version]
- Noda, M.; Deguchi, Y.; Iwasaki, S.; Yoshikawa, N. Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 701–709. [Google Scholar] [CrossRef]
- Li, J.S.; Yu, B.L.; Zhao, W.X.; Chen, W.D. A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy. Appl. Spectrosc. Rev. 2014, 49, 666–691. [Google Scholar] [CrossRef]
- Lou, X.T.; Somesfalean, F.; Xu, F.; Zhang, Y.G.; Zhang, Z.G. Gas sensing by tunable multimode diode laser using correlation spectroscopy. Appl. Phys. B 2008, 93, 671–676. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.B.; Liu, T.Y.; Sun, T.; Grattan, K.T.V. TDLAS detection of propane/butane gas mixture by using reference gas absorption cells and partial least square approach. IEEE Sens. J. 2018, 18, 8587–8596. [Google Scholar] [CrossRef]
- Stachowiak, D.; Jaworski, P.; Krzaczek, P.; Maj, G.; Nikodem, M. Laser-based nonitoring of CH4, CO2, NH3, and H2S in animal farming—system characterization and initial demonstration. Sensors 2018, 18, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Liu, T.G.; Liu, K.; Jiang, J.F.; Wang, T. A method for separation of overlapping absorption lines in intracavity gas detection. Sens. Actuat B-Chem. 2016, 228, 10–15. [Google Scholar] [CrossRef]
- Gordan, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2021, 277, 107949. [Google Scholar]
- Lin, X.; Yu, X.; Li, F.; Zhang, S.; Xin, J.; Chang, X. CO concentration and temperature measurements in a shock tube for Martian mixtures by coupling OES and TDLAS. Appl. Phys. B 2013, 110, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Xu, L.; Huang, A.; Gao, X.; Luo, X.; Zhang, H.; Chang, H.; Cao, Z. A WMS Based TDLAS Tomographic System for Distribution Retrievals of Both Gas Concentration and Temperature in Dynamic Flames. IEEE Sens. J. 2020, 20, 4179–4188. [Google Scholar] [CrossRef]
Absorption Line (cm−1) | Percentage at 298 K (%) | Percentage at 297.5 K (%) |
---|---|---|
4294.570 | 98.525 | 96.015 |
4294.556 | 1.470 | 3.858 |
4294.591 | 0.004 | 0.125 |
4294.595 | 0.001 | 0.002 |
Manufacturer | Product Model | Wavelength Range | Free Spectral Range (FSR) | Cavity Length | Mirror Substrate |
---|---|---|---|---|---|
Thorlabs | SA200-18C | 1800–2600 nm | 1.5 GHz | 50 mm | IR-grade fused silica |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Huang, K. A Method for Correcting the Interference of Overlapping Absorption Lines Using Second Harmonic Spectral Reconstruction. Appl. Sci. 2022, 12, 73. https://doi.org/10.3390/app12010073
Hou Y, Huang K. A Method for Correcting the Interference of Overlapping Absorption Lines Using Second Harmonic Spectral Reconstruction. Applied Sciences. 2022; 12(1):73. https://doi.org/10.3390/app12010073
Chicago/Turabian StyleHou, Yue, and Kejin Huang. 2022. "A Method for Correcting the Interference of Overlapping Absorption Lines Using Second Harmonic Spectral Reconstruction" Applied Sciences 12, no. 1: 73. https://doi.org/10.3390/app12010073
APA StyleHou, Y., & Huang, K. (2022). A Method for Correcting the Interference of Overlapping Absorption Lines Using Second Harmonic Spectral Reconstruction. Applied Sciences, 12(1), 73. https://doi.org/10.3390/app12010073