Research on the Application of the Dynamic Assisted Sleep Light to Smart Mobile Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiemental Environment
2.2. Experimental Equipment
2.3. Experiment Process
Color Temperature | S-Cone-Opic | M-Cone-Opic | L-Cone-Opic | Rhodopic | Melanopic |
---|---|---|---|---|---|
1900 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
1950 K | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
2000 K | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
2050 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2100 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2150 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2200 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2250 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2300 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2350 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2400 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2450 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2500 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2550 K | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
2600 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
2750 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
2800 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
2950 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
3000 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
3050 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
3100 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
3150 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
3200 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
3250 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3300 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3350 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3400 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3450 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3500 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3550 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3600 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3650 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3700 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3750 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
3800 K | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
Item | Score | |||||
---|---|---|---|---|---|---|
I think the space is comfortable. | 1 | 2 | 3 | 4 | 5 | 6 |
The space is too bright to fall asleep. | 1 | 2 | 3 | 4 | 5 | 6 |
I can sleep better in the experiment. | 1 | 2 | 3 | 4 | 5 | 6 |
I feel refresh after I wake up. | 1 | 2 | 3 | 4 | 5 | 6 |
I hope I can continue to sleep. | 1 | 2 | 3 | 4 | 5 | 6 |
2.4. Experimental Subjects
2.5. Analytical Method
2.5.1. Brain Wave Analysis
2.5.2. ECG Analysis
2.5.3. Sleep Bracelet
2.5.4. Typing Test
3. Results
3.1. Subjective Evaluation Questionnaire
3.2. Heart Rate Variability
3.3. Brain Wave Analysis
3.3.1. θ(Theta) Wave
3.3.2. δ(Delta) Wave
3.4. Analysis of Sleep Bracelet
3.5. Typing Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solso, R.L. The Psychology of Art and the Evolution of the Conscious Brain; MIT Press: Cambridge, MA, USA, 2003; p. 57. [Google Scholar]
- Hattar, S.; Liao, H.W.; Takao, M.; Berson, D.M.; Yau, K.W. Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock. Science 2002, 295, 1070–1073. [Google Scholar]
- Berson, D.M. Strange vision: Ganglion cells as circadian photoreceptors. Trends Neurosci. 2003, 26, 314–320. [Google Scholar] [CrossRef]
- IES. TM-18-18-Light and Human Health: An Overview of the Impact of Optical Radiation on Visual, Circadian, Neuroendocrine and Neurobehavioral Responses; IES: New York, NY, USA, 2018. [Google Scholar]
- Morin, L.P. The circadian visual system. Brain Res. Rev. 1994, 19, 102–127. [Google Scholar] [CrossRef]
- Axelrod, J. The Pineal Gland: A Neurochemical Transducer. Science 1974, 184, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Kozaki, T.; Kitamura, S.; Higashihara, Y.; Ishibashi, K.; Noguchi, H.; Yasukouchi, A. Effect of color temperature of light sources on slow-wave sleep. J. Physiol. Anthropol. Appl. Hum. Sci. 2005, 24, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Chellappa, S.L.; Steiner, R.; Oelhafen, P.; Lang, D.; Götz, T.; Krebs, J.; Cajochen, C. Acute exposure to evening blue-enriched light impacts on human sleep. J. Sleep Res. 2013, 22, 573580. [Google Scholar] [CrossRef] [Green Version]
- Smolders, K.C.; De Kort, Y.A. Investigating daytime effects of correlated colour temperature on experiences, performance, and arousal. J. Environ. Psychol. 2017, 50, 80. [Google Scholar] [CrossRef]
- Canazei, M.; Dehoff, P.; Staggl, S.; Pohl, W. Effects of dynamic ambient lighting on female permanent morning shift workers. Lighting Res. Technol. 2013, 46, 140–156. [Google Scholar] [CrossRef]
- De Kort, Y.A.W.; Smolders, K.C.H.J. Effects of dynamic lighting on office workers: First results of a field study with monthly alternating settings. Lighting Res. Technol. 2010, 42, 345–360. [Google Scholar] [CrossRef]
- West, K.E.; Jablonski, M.R.; Warfield, B.; Cecil, K.S.; James, M.; Ayers, M.A.; Maida, J.; Bowen, C.; Sliney, D.H.; Rollag, M.D.; et al. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J. Appl. Physiol. 2011, 110, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Harper, K. So Tired in the Morning…The Science of Sleep; ChemMatters: Washington, DC, USA, 2015. [Google Scholar]
- Taiwan Society of Sleep Medicine. Available online: https://worldsleepsociety.org/membership/societymembership/membersocieties/taiwan-society-of-sleep-medicine/ (accessed on 30 March 2019).
- Klink, M.E. Risk factors associated with complaints of insomnia in a general adult population: Influence of previous complaints of insomnia. Arch. Intern. Med. 1992, 152, 1634–1637. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, M.M. Epidemiology of insomnia: What we know and what we still need to learn. Sleep Med. Rev. 2002, 6, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Roth, T.; Ancoli-Israel, S. Daytime consequences and correlates of insomnia in the United States: Results of the 1991 National Sleep Foundation Survey. II. Sleep J. Sleep Res. Sleep Med. 1999, 22, S354–S358. [Google Scholar]
- Chang, A.-M.; Aeschbach, D.; Duffy, J.F.; Czeisler, C.A. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc. Natl. Acad. Sci. USA 2014, 112, 1232–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunetti, V.C.; O’Loughlin, E.K.; O’Loughlin, J.; Constantin, E.; Pigeon, É. Screen and nonscreen sedentary behavior and sleep in adolescents. Sleep Health 2016, 2, 335–340. [Google Scholar] [CrossRef]
- Rångtell, F.H.; Ekstrand, E.; Rapp, L.; Lagermalm, A.; Liethof, L.; Búcaro, M.O.; Lingfors, D.; Broman, J.-E.; Schiöth, H.B.; Benedict, C. Two hours of evening reading on a self-luminous tablet vs. reading a physical book does not alter sleep after daytime bright light exposure. Sleep Med. 2016, 23, 111–118. [Google Scholar] [CrossRef]
- Heath, M.; Sutherland, C.; Bartel, K.; Gradisar, M.; Williamson, P.; Lovato, N.; Micic, G. Does one hour of bright or short-wavelength filtered tablet screenlight have a meaningful effect on adolescents’ pre-bedtime alertness, sleep, and daytime functioning? Chronobiol. Int. 2014, 31, 496–505. [Google Scholar] [CrossRef]
- Lockley, S.W.; Evans, E.E.; Scheer, F.A.; Brainard, G.C.; Czeisler, C.A.; Aeschbach, D. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep 2006, 29, 161–168. [Google Scholar]
- Cajochen, C.; Munch, M.; Kobialka, S.; Krauchi, K.; Steiner, R.; Oelhafen, P.; Orgül, S.; Wirz-Justice, A. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J. Clin. Endocrinol. Metab. 2005, 90, 1311–1316. [Google Scholar] [CrossRef] [Green Version]
- Chellappa, S.L.; Steiner, R.; Blattner, P.; Oelhafen, P.; Götz, T.; Cajochen, C. Non-visual effects of light on melatonin, alertness and cognitive performance: Can blue-enriched light keep us alert? PLoS ONE 2011, 6, e16429. [Google Scholar] [CrossRef]
- International Data Corporation (IDC). Worldwide Wearables Shipments Surge 94.6% in 3Q 2019 Led by Expanding Hearables Market, Says IDC. Available online: https://www.idc.com/getdoc.jsp?containerId=prUS45712619 (accessed on 24 March 2020).
- Kemp, S. Digital 2020: Global Digital Overview. 2020. Available online: https://datareportalcom/reports/digital-2020-global-digital-overview (accessed on 24 March 2020).
- Wang, Z.W. The Design and Verifcation Sleep Assistant of Light System for Lunch Break. 2019. Available online: https://hdl.handle.net/11296/2wn6r5 (accessed on 27 September 2019).
- Hsieh, P.H. The Influence of Dynamic Lighting on Human Sleep. 2018. Available online: https://hdl.handle.net/11296/39v97h (accessed on 30 August 2019).
- Tai, W.Y. The Influence of Lighting on Human Circadian Rhythms. 2016. Available online: https://hdl.handle.net/11296/qn6nb2 (accessed on 30 August 2020).
- Recommendation ITU-R BT.500-13. Methodology for the Subjective Assessment of the Quality of Television Pictures; BT Series; Electronic Publication: Geneva, Switzerland, 2012.
- Institute of Labor, Occupational Safety and Health, MOL. Introduction to the Human Body Measurement Database and Important Measurement Value. 2014. Available online: https://www.ilosh.gov.tw/menu/1188/1201/%E4%BA%BA%E9%AB%94%E8%A8%88%E6%B8%AC%E8%B3%87%E6%96%99%E5%BA%AB/%E4%BA%BA%E9%AB%94%E8%A8%88%E6%B8%AC%E8%B3%87%E6%96%99%E5%BA%AB%E7%B0%A1%E4%BB%8B%E5%8F%8A%E9%87%8D%E8%A6%81%E8%A8%88%E6%B8%AC%E5%80%BC/ (accessed on 12 April 2022).
- Commission Internationale de l’Eclairage. CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light; CIE: Vienna, Austria, 2018; Available online: https://cie.co.at/publications/cie-system-metrology-optical-radiation-iprgc-influenced-responses-light-0 (accessed on 12 April 2022).
- Zimmerman, D.W. Teacher’s corner: A note on interpretation of the paired-samples t test. J. Educ. Behav. Stat. 2017, 22, 349–360. [Google Scholar] [CrossRef]
- Fradette, K.; Keselman, H.J.; Lix, L.; Algina, J.; Wilcox, R.R. Conventional and robust paired and independent-samples t tests: Type I error and power rates. J. Mod. Appl. Stat. Methods 2003, 2, 22. [Google Scholar] [CrossRef]
- Wilcox, R.R. ANOVA: A paradigm for low power and misleading measures of effect size? Rev. Educ. Res. 1995, 65, 51–77. [Google Scholar] [CrossRef]
- St, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272. [Google Scholar]
- Koudelková, Z.; Strmiska, M. Introduction to the identification of brain waves based on their frequency. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Available online: https://www.matec-conferences.org/articles/matecconf/pdf/2018/69/matecconf_cscc2018_05012.pdf (accessed on 12 April 2022).
- Sih, G.C.; Tang, K.K. On-off switching of theta–delta brain waves related to falling asleep and awakening. Theor. Appl. Fract. Mech. 2013, 63, 1–17. [Google Scholar] [CrossRef]
- Lombardi, F. Clinical implications of present physiological understanding of HRV components. Card. Electrophysiol. Rev. 2002, 6, 245–249. [Google Scholar] [CrossRef]
- Saul, J.P.; Arai, Y.; Berger, R.D.; Lilly, L.S.; Colucci, W.S.; Cohen, R.J. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am. J. Cardiol. 1988, 61, 1292–1299. [Google Scholar] [CrossRef]
- Marino, M.; Li, Y.; Rueschman, M.N.; Winkelman, J.W.; Ellenbogen, J.M.; Solet, J.M.; Dulin, H.; Berkman, L.F.; Buxton, O.M. Measuring sleep: Accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep 2013, 36, 1747–1755. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Physical Activity and Health. A Rreport of the Surgeon General; US Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 1996. [Google Scholar]
- Finlayson, G.D.; Morovic, P.M. Metamer constrained color correction. J. Imaging Sci. Technol. 2000, 44, 295–300. [Google Scholar]
- Farokhnezhad Afshar, P.; Bahramnezhad, F.; Asgari, P.; Shiri, M. Effect of White Noise on Sleep in Patients Admitted to a Coronary Care. J. Caring Sci. 2016, 5, 103–109. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, D.; Li, X.; Ma, J.; Zhang, J.; Fang, J. Pink noise: Effect on complexity synchronization of brain activity and sleep consolidation. J. Theor. Biol. 2012, 306, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Huotilainen, M.; Gröhn, M.; Yli-Kyyny, I.; Virkkala, J.; Paunio, T. Sleep Enhancement by Sound Stimulation; Georgia Institute of Technology: Atlanta, GA, USA, 2015; Available online: http://hdl.handle.net/1853/54210 (accessed on 12 April 2022).
- Golrou, A.; Sheikhani, A.; Nasrabadi, A.M.; Saebipour, M.R. Enhancement of sleep quality and stability using acoustic stimulation during slow wave sleep. Int. Clin. Neurosci. J. 2018, 5, 126. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-Y.; Wang, Y.-K.; Wang, Z.-W. Research on the Application of the Dynamic Assisted Sleep Light to Smart Mobile Devices. Appl. Sci. 2022, 12, 5191. https://doi.org/10.3390/app12105191
Chen C-Y, Wang Y-K, Wang Z-W. Research on the Application of the Dynamic Assisted Sleep Light to Smart Mobile Devices. Applied Sciences. 2022; 12(10):5191. https://doi.org/10.3390/app12105191
Chicago/Turabian StyleChen, Chien-Yu, You-Kwang Wang, and Zhi-Wei Wang. 2022. "Research on the Application of the Dynamic Assisted Sleep Light to Smart Mobile Devices" Applied Sciences 12, no. 10: 5191. https://doi.org/10.3390/app12105191
APA StyleChen, C. -Y., Wang, Y. -K., & Wang, Z. -W. (2022). Research on the Application of the Dynamic Assisted Sleep Light to Smart Mobile Devices. Applied Sciences, 12(10), 5191. https://doi.org/10.3390/app12105191