Exploring CO2 Bio-Mitigation via a Biophotocatalytic/Biomagnetic System for Wastewater Treatment and Biogas Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater and Activated Sludge
2.2. Experimental Setup
3. Results
4. Discussion
4.1. Degradation of the Organics
4.2. Biogas Production
4.3. Energy Estimation and CO2 Reduction Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goswami, R.K.; Mehariya, S.; Obulisamy, P.K.; Verma, P. Advanced microalgae-based renewable biohydrogen production systems: A review. Bioresour. Technol. 2021, 320, 124301. [Google Scholar] [CrossRef] [PubMed]
- Spierling, S.; Röttger, C.; Venkatachalam, V.; Mudersbach, M.; Herrmann, C.; Endres, H.-J. Bio-based plastics-a building block for the circular economy? Procedia CIRP 2018, 69, 573–578. [Google Scholar] [CrossRef]
- Wang, W.-N.; Soulis, J.; Yang, Y.J.; Biswas, P. Comparison of CO2 Photoreduction Systems: A Review. Aerosol Air Qual. Res. 2014, 14, 533–549. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Chou, H.-C.; Wu, J.C.S.; Tsai, D.P.; Mul, G. CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Appl. Catal. A Gen. 2010, 380, 172–177. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Rathilal, S. Biogas production from wastewater treatment-evaluating anaerobic and biomagnetic systems. Water-Energy Nexus 2021, 4, 165–173. [Google Scholar] [CrossRef]
- Michailos, S.; Walker, M.; Moody, A.; Poggio, D.; Pourkashanian, M. Biomethane production using an integrated anaerobic digestion, gasification and CO2 biomethanation process in a real waste water treatment plant: A techno-economic assessment. Energy Convers. Manag. 2020, 209, 112663. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Rathilal, S. Response Surface Optimization of Biophotocatalytic Degradation of Industrial Wastewater for Bioenergy Recovery. Bioengineering 2022, 9, 95. [Google Scholar] [CrossRef]
- Krümpel, J.; Schäufele, F.; Schneider, J.; Jungbluth, T.; Zielonka, S.; Lemmer, A. Kinetics of biogas production in anaerobic filters. Bioresour. Technol. 2016, 200, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Stafford, W.; Cohen, B.; Pather-Elias, S.; von Blottnitz, H.; van Hille, R.; Harrison, S.T.L.; Burton, S.G. Technologies for recovery of energy from wastewaters: Applicability and potential in South Africa. J. Energy S. Afr. 2013, 24. Available online: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2013000100003 (accessed on 8 May 2022). [CrossRef]
- Zhao, J.; Li, Y.; Dong, R. Recent progress towards in-situ biogas upgrading technologies. Sci. Total Environ. 2021, 800, 149667. [Google Scholar] [CrossRef] [PubMed]
- Tetteh, E.K.; Amo-Duodu, G.; Rathilal, S. Synergistic Effects of Magnetic Nanomaterials on Post-Digestate for Biogas Production. Molecules 2021, 26, 6434. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Ngo, H.H.; Guo, W.; Nguyen, T.L.H.; Chang, S.W.; Nguyen, D.D.; Varjani, S.; Lei, Z.; Deng, L. Environmental impacts and greenhouse gas emissions assessment for energy recovery and material recycle of the wastewater treatment plant. Sci. Total Environ. 2021, 784, 147135. [Google Scholar] [CrossRef] [PubMed]
- Apollo, S.; Onyango, M.S.; Ochieng, A. An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater. J. Hazard. Mater. 2013, 261, 435–442. [Google Scholar] [CrossRef]
- Durán, I.; Rubiera, F.; Pevida, C. Modeling a biogas upgrading PSA unit with a sustainable activated carbon derived from pine sawdust. Sensitivity analysis on the adsorption of CO2 and CH4 mixtures. Chem. Eng. J. 2021, 428, 132564. [Google Scholar] [CrossRef]
- Ángeles, R.; Vega-Quiel, M.J.; Batista, A.; Fernández-Ramos, O.; Lebrero, R.; Muñoz, R. Influence of biogas supply regime on photosynthetic biogas upgrading performance in an enclosed algal-bacterial photobioreactor. Algal Res. 2021, 57, 102350. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Baniamer, M.; Aroujalian, A.; Sharifnia, S. Photocatalytic membrane reactor for simultaneous separation and photoreduction of CO2 to methanol. Int. J. Energy Res. 2021, 45, 2353–2366. [Google Scholar] [CrossRef]
- Ola, O.; Maroto-Valer, M.M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 16–42. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Lin, H.-M. Photo reduction of CO2 to methanol via TiO2 photocatalyst. Int. J. Photoenergy 2005, 7, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Sharmila, V.G.; Banu, J.R.; Gunasekaran, M.; Angappane, S.; Yeom, I.T. Nano-layered TiO2 for effective bacterial disintegration of waste activated sludge and biogas production. J. Chem. Technol. Biotechnol. 2018, 93, 2701–2709. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, S.-J. TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 2013, 19, 1761–1769. [Google Scholar] [CrossRef]
- Esfandiari, N.; Kashefi, M.; Afsharnezhad, S.; Mirjalili, M. Insight into enhanced visible light photocatalytic activity of Fe3O4–SiO2–TiO2 core-multishell nanoparticles on the elimination of Escherichia coli. Mater. Chem. Phys. 2020, 244, 122633. [Google Scholar] [CrossRef]
- Kalan, R.E.; Yaparatne, S.; Amirbahman, A.; Tripp, C.P. P25 titanium dioxide coated magnetic particles: Preparation, characterization and photocatalytic activity. Appl. Catal. B Environ. 2016, 187, 249–258. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Rathilal, S. Biophotocatalytic Reduction of CO2 in Anaerobic Biogas Produced from Wastewater Treatment Using an Integrated System. Catalysts 2020, 12, 76. [Google Scholar] [CrossRef]
- Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef] [Green Version]
- Ajay, C.; Mohan, S.; Dinesha, P.; Rosen, M.A. Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel 2020, 277, 118234. [Google Scholar] [CrossRef]
- Abdullah, H.; Khan, M.M.R.; Ong, H.R.; Yaakob, Z. Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. J. CO2 Util. 2017, 22, 15–32. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Samer, M.; Attia, Y.; Abdel-Hadi, M.; Hassan, H.; Badr, Y. Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew. Energy 2016, 87, 592–598. [Google Scholar] [CrossRef]
- Xu, B.; Zada, A.; Wang, G.; Qu, Y. Boosting the visible-light photoactivities of BiVO4 nanoplates by Eu doping and coupling CeOx nanoparticles for CO2 reduction and organic oxidation. Sustain. Energy Fuels 2019, 3, 3363–3369. [Google Scholar] [CrossRef]
- Kweinor Tetteh, E.; Rathilal, S. Application of biomagnetic nanoparticles for biostimulation of biogas production from wastewater treatment. Mater. Today Proc. 2021, 45, 5214–5220. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
pH | 7.5 |
Chemical oxygen demand (mg COD/L) | 1600 ± 16.2 |
Turbidity (NTU) | 155 ± 2.6 |
Colour (Pt.Co; 465 nm) | 85 ± 3.6 |
Total solids (mgTS/L) | 135 ± 12 |
Volatile solids (mgVS/L) | 94 ± 6.8 |
Parameters | AD System | BP System | BPM System |
---|---|---|---|
pH | 6.8 | 6.5 | 6.5 |
Chemical oxygen demand (mg COD/L) | 880 | 560 | 400 |
VS/TS | 0.776 | 0.962 | 0.979 |
Cumulative biogas produced (mL) | 625 | 1125 | 1330 |
Methane portion (%) Carbon dioxide (%) | 65.5 34.5 | 95 5 | 98 2 |
Total energy produced in 30 days (kWh) | 550 | 1470 | 2027 |
Assumed 33% electricity produced (kWh) | 182 | 485 | 669 |
CO2 emission reduction (kg CO2/L) | 0.173 | 0.464 | 0.640 |
Bioreactor | AD System | BP System | BPM System |
---|---|---|---|
Measured (Y, mL/g.d COD) | 625 | 1125 | 1330 |
Predicted (Y, mL/g.d COD) | 658.58 | 1117.828 | 1370.55 |
k (d−1) | 0.131 | 0.189 | 0.193 |
λ (d) | 10.7 | 9.62 | 9.21 |
SSE | 8102.02 | 5551.23 | 4131.10 |
R2 | 0.994 | 0.998 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tetteh, E.K.; Amo-Duodu, G.; Rathilal, S. Exploring CO2 Bio-Mitigation via a Biophotocatalytic/Biomagnetic System for Wastewater Treatment and Biogas Production. Appl. Sci. 2022, 12, 6840. https://doi.org/10.3390/app12146840
Tetteh EK, Amo-Duodu G, Rathilal S. Exploring CO2 Bio-Mitigation via a Biophotocatalytic/Biomagnetic System for Wastewater Treatment and Biogas Production. Applied Sciences. 2022; 12(14):6840. https://doi.org/10.3390/app12146840
Chicago/Turabian StyleTetteh, Emmanuel Kweinor, Gloria Amo-Duodu, and Sudesh Rathilal. 2022. "Exploring CO2 Bio-Mitigation via a Biophotocatalytic/Biomagnetic System for Wastewater Treatment and Biogas Production" Applied Sciences 12, no. 14: 6840. https://doi.org/10.3390/app12146840
APA StyleTetteh, E. K., Amo-Duodu, G., & Rathilal, S. (2022). Exploring CO2 Bio-Mitigation via a Biophotocatalytic/Biomagnetic System for Wastewater Treatment and Biogas Production. Applied Sciences, 12(14), 6840. https://doi.org/10.3390/app12146840