An Investigation on Mineral Dissolution and Precipitation in Cement-Stabilized Soils: Thermodynamic Modeling and Experimental Analysis
Abstract
:1. Introduction
2. Materials
2.1. Cement, Water and Soil
2.2. Admixtures
3. Thermodynamic Modeling
3.1. Modeling Basis
3.2. Maintenance of Thermodynamic Database
4. Experimental Procedure
4.1. Specimen Preparation
4.2. Pore Solution Separation and Analysis
4.3. XRD Test
5. Results and Discussion
5.1. UCS Analysis
5.2. Pore Solution Analysis
5.3. Modeling Results and Analysis
5.3.1. Influences of the Admixtures on the Chemical States of the Compositional Minerals
5.3.2. The Correlation Analysis of the Saturation Levels between Ca(OH)2 and the Investigated Products
5.4. Mineralogy Analysis and Validation
5.5. Discussion on the Analytical Features of Thermodynamic Modeling and XRD
6. Conclusions
- (1)
- Thermodynamic modeling can be applied to the systems of cement-stabilized soils by complementing thermodynamic data with the dissolution equations of the soil minerals. This novel method employs pore solution data to quantify the saturation levels of the minerals of interest, thus revealing more insights into the development of the corresponding chemical reactions. Techniques such as XRD are encouraged to be combined with the novel model in order to comprehensively characterize the compositional minerals since the investigated aqueous species may not be sufficient.
- (2)
- The formation of pozzolanic products grows linearly with the OH− concentration of the pore solution, while that of cement hydrates is highly correlated to the dissolution equilibrium of Ca(OH)2 and its complexes. The Ca(OH)2 in the pore solution is undersaturated after 5 h due to its consumption by the soil minerals. CaOH+ appears to be the main chemical speciation of the Ca species and participates in the corresponding chemical reactions, with higher saturation levels resulting in higher amounts of cement hydrates.
- (3)
- JA alters the performances of cement-stabilized soils through the dissolution of its compositional minerals. When the pore solution is undersaturated, the proper JA dose improves the OH− concentration within the pore solution, accelerates the dissolution of the raw materials and increases the saturation of the aqueous species, thereby improving the formation of the reaction products and the compressive strength of the specimen. However, limited by the dissolution equilibrium of Ca(OH)2 and its complexes, the excessively dissolved OH− from excessive JA doses would inhibit the dissolution of cement clinkers, which would result in the formation of CO2−containing hydrates and a reduction in the compressive strength.
- (4)
- The CaOH+ saturation is increased by adding PNS since the PNS molecules adsorb preferentially on montmorillonite over the clinkers, thereby lowering the consumption of the Ca species. This behavior accelerates cement hydration but hinders the formation of pozzolanic products. Due to the inevitable adsorption of the clinkers, an excessive PNS addition would lower the acceleration of cement hydration. Nevertheless, the compressive strength of the cement-stabilized soils in the PNS series exceeded that of the plain specimen in this study since cement hydrates are primarily responsible for compressive strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, L.K.; Sirdesai, N.N.; Sharma, K.M.; Singh, T.N. Experimental Study to Examine the Independent Roles of Lime and Cement on the Stabilization of a Mountain Soil: A Comparative Study. Appl. Clay Sci. 2018, 152, 183–195. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Suddeepong, A.; Chinkulkijniwat, A.; Liu, M.D. Strength and Compressibility of Lightweight Cemented Clays. Appl. Clay Sci. 2012, 69, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Wei, H.; Qian, W.; Cai, Y. Composite Alkaline Activator on Cemented Soil: Multiple Tests and Mechanism Analyses. Constr. Build. Mater. 2018, 188, 433–443. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, S.; Zhang, Y.; Li, Z.; Xu, L. Freeze-Thaw Performance of a Cement-Treated Expansive Soil. Cold Reg. Sci. Technol. 2020, 170, 102926. [Google Scholar] [CrossRef]
- Plank, J.; Sakai, E.; Miao, C.W.; Yu, C.; Hong, J.X. Chemical Admixtures—Chemistry, Applications and Their Impact on Concrete Microstructure and Durability. Cem. Concr. Res. 2015, 78, 81–99. [Google Scholar] [CrossRef]
- Akula, P.; Little, D.N. Coupled Thermodynamic and Experimental Approach to Evaluate Ettringite Formation in a Soil Stabilized with Fluidized Bed Ash By-Product: A Case Study. Transp. Geotech. 2020, 23, 100352. [Google Scholar] [CrossRef]
- Wang, J.; Schweizer, D.; Liu, Q.; Su, A.; Hu, X.; Blum, P. Three-Dimensional Landslide Evolution Model at the Yangtze River. Eng. Geol. 2021, 292, 106275. [Google Scholar] [CrossRef]
- Ge, L.; Wang, C.-C.; Hung, C.-W.; Liao, W.-C.; Zhao, H. Assessment of Strength Development of Slag Cement Stabilized Kaolinite. Constr. Build. Mater. 2018, 184, 492–501. [Google Scholar] [CrossRef]
- Yang, Q.; Du, C.; Zhang, J.; Yang, G. Influence of Silica Fume and Additives on Unconfined Compressive Strength of Cement-Stabilized Marine Soft Clay. J. Mater. Civ. Eng. 2020, 32, 4019346. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Cristelo, N.; Glendinning, S.; Fernandes, L.; Pinto, A.T. Effect of Calcium Content on Soil Stabilisation with Alkaline Activation. Constr. Build. Mater. 2012, 29, 167–174. [Google Scholar] [CrossRef]
- Sargent, P. The Development of Alkali-Activated Mixtures for Soil Stabilisation. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Woodhead Publishing: Sawston, UK, 2015; ISBN 9781782422884. [Google Scholar]
- Dong, Y.; Cui, L.; Zhang, X. Multiple-GPU Parallelization of Three-Dimensional Material Point Method Based on Single-Root Complex. Int. J. Numer. Methods Eng. 2022, 123, 1481–1504. [Google Scholar] [CrossRef]
- Jin, L.; Song, W.; Shu, X.; Huang, B. Use of Water Reducer to Enhance the Mechanical and Durability Properties of Cement-Treated Soil. Constr. Build. Mater. 2018, 159, 690–694. [Google Scholar] [CrossRef]
- Xu, F.; Cai, Y.; Qian, W.; Wei, H.; Zhuang, H.; He, Y. Characterization and Mechanism Analysis of Polynaphthalene Sulfonate Modified Cemented Soil. Constr. Build. Mater. 2020, 240, 117936. [Google Scholar] [CrossRef]
- Yan, Z.Y.; Tong, X.D.; Zhou, M.M. Experiment of Cement-Stabilized Soil Mixed High Efficient Naphthalene Water Reducing Agent in Laboratory. Chin. J. Undergr. Space Eng. 2009, 5, 920–923. [Google Scholar]
- Yu, F.; Huang, Y.; Sun, D. Modification Effect of Lime Soil and Cement Soil by Water-Reducing Agent. J. Build. Mater. 2017, 20, 283–287. [Google Scholar]
- Chrysochoou, M. Investigation of the Mineral Dissolution Rate and Strength Development in Stabilized Soils Using Quantitative X-Ray Diffraction. J. Mater. Civ. Eng. 2014, 26, 288–295. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, S.; Zhang, Y.; Wang, L.; Li, Z. Hydraulic Conductivity of Gravelly Soils with Various Coarse Particle Contents Subjected to Freeze–thaw Cycles. J. Hydrol. 2021, 598, 126302. [Google Scholar] [CrossRef]
- Lothenbach, B.; Zajac, M. Application of Thermodynamic Modelling to Hydrated Cements. Cem. Concr. Res. 2019, 123, 105779. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Nonat, A. Hydration of Cementitious Materials, Present and Future. Cem. Concr. Res. 2011, 41, 651–665. [Google Scholar] [CrossRef]
- Rothstein, D.; Thomas, J.J.; Christensen, B.J.; Jennings, H.M. Solubility Behavior of Ca-, S-, Al-, and Si-Bearing Solid Phases in Portland Cement Pore Solutions as a Function of Hydration Time. Cem. Concr. Res. 2002, 32, 1663–1671. [Google Scholar] [CrossRef]
- Zajac, M.; Skocek, J.; Adu-Amankwah, S.; Black, L.; Ben Haha, M. Impact of Microstructure on the Performance of Composite Cements: Why Higher Total Porosity Can Result in Higher Strength. Cem. Concr. Compos. 2018, 90, 178–192. [Google Scholar] [CrossRef]
- Ke, X.; Bernal, S.A.; Provis, J.L.; Lothenbach, B. Thermodynamic Modelling of Phase Evolution in Alkali-Activated Slag Cements Exposed to Carbon Dioxide. Cem. Concr. Res. 2020, 136, 106158. [Google Scholar] [CrossRef]
- Yu, H.; Huang, X.; Ning, J.; Zhu, B.; Cheng, Y. Effect of Cation Exchange Capacity of Soil on Stabilized Soil Strength. Soils Found. 2014, 54, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.J.; Jiang, N.J.; Liu, S.Y.; Jin, F.; Singh, D.N.; Puppala, A.J. Engineering Properties and Microstructural Characteristics of Cement-Stabilized Zinc-Contaminated Kaolin. Can. Geotech. J. 2014, 51, 289–302. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.; Guo, J.; Zhao, C.; Gong, B.W. Reexamination of Lime Stabilization Mechanisms of Expansive Clay. J. Mater. Civ. Eng. 2015, 27, 4014108. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. In U.S. Geological Survey Techniques and Methods, Book 6; U.S. Department of the Interior: Washington, DC, USA; U.S. Geological Survey: Reston, VA, USA, 2013; Chapter 43A. [Google Scholar]
- Lothenbach, B.; Kulik, D.A.; Matschei, T.; Balonis, M.; Baquerizo, L.; Dilnesa, B.; Miron, G.D.; Myers, R.J. Cemdata18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials. Cem. Concr. Res. 2019, 115, 472–506. [Google Scholar] [CrossRef] [Green Version]
- Khorshidi, M.; Lu, N. Intrinsic Relation between Soil Water Retention and Cation Exchange Capacity. J. Geotech. Geoenviron. Eng. 2017, 143, 4016119. [Google Scholar] [CrossRef]
- Zajac, M.; Skocek, J.; Lothenbach, B.; Mohsen, B.H. Late Hydration Kinetics: Indications from Thermodynamic Analysis of Pore Solution Data. Cem. Concr. Res. 2020, 129, 105975. [Google Scholar] [CrossRef]
- Thomas, J.J.; Rothstein, D.; Jennings, H.M.; Christensen, B.J. Effect of Hydration Temperature on the Solubility Behavior of Ca-, S-, Al-, and Si-Bearing Solid Phases in Portland Cement Pastes. Cem. Concr. Res. 2003, 33, 2037–2047. [Google Scholar] [CrossRef]
- Miron, G.D.; Kulik, D.A.; Dmytrieva, S.V.; Wagner, T. GEMSFITS: Code Package for Optimization of Geochemical Model Parameters and Inverse Modeling. Appl. Geochem. 2015, 55, 28–45. [Google Scholar] [CrossRef] [Green Version]
- Rożek, P.; Król, M.; Mozgawa, W. Geopolymer-Zeolite Composites: A Review. J. Clean. Prod. 2019, 230, 557–579. [Google Scholar] [CrossRef]
- Lothenbach, B.; Bernard, E.; Mäder, U. Zeolite Formation in the Presence of Cement Hydrates and Albite. Phys. Chem. Earth 2017, 99, 77–94. [Google Scholar] [CrossRef]
- Tardy, Y.; Duplay, J. A Method of Estimateng the Gibbs Free Energies of Formation of Hydrated and Dehydrated Clay Minerals. Geochim. Cosmochim. Acta 1992, 56, 3007–3029. [Google Scholar] [CrossRef]
- Chen, H.; Feng, P.; Ye, S.; Sun, W. The Coupling Effect of Calcium Concentration and pH on Early Hydration of Cement. Constr. Build. Mater. 2018, 185, 391–401. [Google Scholar] [CrossRef]
- Khalifa, A.Z.; Cizer, Ö.; Pontikes, Y.; Heath, A.; Patureau, P.; Bernal, S.A.; Marsh, A.T.M. Advances in Alkali-Activation of Clay Minerals. Cem. Concr. Res. 2020, 132, 106050. [Google Scholar] [CrossRef]
- Prince, W.; Espagne, M.; Aıtcin, P.C. Ettringite Formation: A Crucial Step in Cement Superplasticizer Compatibility. Cem. Concr. Res. 2003, 33, 635–641. [Google Scholar] [CrossRef]
- Aydin, S.; Hilmi Aytaç, A.; Ramyar, K. Effects of Fineness of Cement on Polynaphthalene Sulfonate Based Superplasticizer-Cement Interaction. Constr. Build. Mater. 2009, 23, 2402–2408. [Google Scholar] [CrossRef]
- Tang, C.S.; Wang, D.Y.; Zhu, C.; Zhou, Q.Y.; Xu, S.K.; Shi, B. Characterizing Drying-Induced Clayey Soil Desiccation Cracking Process Using Electrical Resistivity Method. Appl. Clay Sci. 2018, 152, 101–112. [Google Scholar] [CrossRef]
- Du, J.; Zhou, A.; Lin, X.; Bu, Y.; Kodikara, J. Revealing Expansion Mechanism of Cement-Stabilized Expansive Soil with Different Interlayer Cations through Molecular Dynamics Simulations. J. Phys. Chem. C 2020, 124, 14672–14684. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in Understanding Hydration of Portland Cement. Cem. Concr. Res. 2015, 78, 38–56. [Google Scholar] [CrossRef]
- Xu, F.; Wei, H.; Qian, W.; Chen, X.; Xu, T.; He, Y.; Wen, G. Experimental Investigation on Replacing Cement by Sintered Limestone Ash from the Steelmaking Industry for Cement-Stabilized Soil: Engineering Performances and Micro-Scale Analysis. Constr. Build. Mater. 2020, 235, 117425. [Google Scholar] [CrossRef]
- Monteiro, P.J.M.; Geng, G.; Marchon, D.; Li, J.; Alapati, P.; Kurtis, K.E.; Qomi, M.J.A. Advances in Characterizing and Understanding the Microstructure of Cementitious Materials. Cem. Concr. Res. 2019, 124, 105806. [Google Scholar] [CrossRef]
- McDonald, L.J.; Afzal, W.; Glasser, F.P. Evidence of Scawtite and Tilleyite Formation at Ambient Conditions in Hydrated Portland Cement Blended with Freshly-Precipitated Nano-Size Calcium Carbonate to Reduce Greenhouse Gas Emissions. J. Build. Eng. 2022, 48, 103906. [Google Scholar] [CrossRef]
- Zajac, M.; Lechevallier, A.; Durdzinski, P.; Bullerjahn, F.; Skibsted, J.; Ben Haha, M. CO2 Mineralisation of Portland Cement: Towards Understanding the Mechanisms of Enforced Carbonation. J. CO2 Util. 2020, 38, 398–415. [Google Scholar] [CrossRef]
- von Greve-Dierfeld, S.; Lothenbach, B.; Vollpracht, A.; Wu, B.; Huet, B.; Andrade, C.; Medina, C.; Thiel, C.; Gruyaert, E.; Vanoutrive, H.; et al. Understanding the Carbonation of Concrete with Supplementary Cementitious Materials: A Critical Review by RILEM TC 281-CCC. Mater. Struct. 2020, 53, 136. [Google Scholar] [CrossRef]
- Hanehara, S.; Yamada, K. Interaction between Cement and Chemical Admixture from the Point of Cement Hydration, Absorption Behaviour of Admixture, and Paste Rheology. Cem. Concr. Res. 1999, 29, 1159–1165. [Google Scholar] [CrossRef]
Properties | Index | Value |
---|---|---|
Geotechnical Properties | Liquid Limit (%) | 60.6 |
Plastic Limit (%) | 38.7 | |
Plasticity Index, PI | 21.9 | |
Optimum Moisture Content (%) | 34.8 | |
Maximum Dry Density (g/cm3) | 1.65 | |
Exchangeable Cation Amounts (meq/100 g) | ||
Na+ | 27.6 | |
K+ | 3.1 | |
Ca2+ | 9.7 | |
Mineralogy | Quartz (%) | 28 |
Montmorillonite (%) | 46 | |
Muscovite (%) | 17 | |
Albite (%) | 7 |
Mineral | Reaction | Keq |
---|---|---|
Na montmorillonite | Na0.33Al2.33Si3.67O10(OH)2 + 2OH− + 7.34H2O = 0.33Na+ + 2.33Al(OH + 3.67H4SiO4 | 1021.86 |
Muscovite | KAl3Si3O10(OH)2 + 10H2O + 2OH− = K+ + 3Al(OH + 3H4SiO4 | 0.794 |
Na albite | Na(AlSi3O8) + 8H2O = Na+ + Al(OH + 3H4SiO4 | 10−18.00 |
Soil | Cement | JA Dose | PNS Dose | Specimen Name |
---|---|---|---|---|
90 | 10 | \ | \ | CS * |
90 | 10 | 0.4 | \ | JA4 |
90 | 10 | 0.6 | \ | JA6 |
90 | 10 | 0.8 | \ | JA8 |
90 | 10 | 1.0 | \ | JA10 |
90 | 10 | 1.2 | \ | JA12 |
90 | 10 | \ | 0.06 | PNS6 |
90 | 10 | \ | 0.09 | PNS9 |
90 | 10 | \ | 0.12 | PNS12 |
90 | 10 | \ | 0.15 | PNS15 |
90 | 10 | \ | 0.18 | PNS18 |
Curing Period | Na + K | Na | Si | Al | Ca | OH− | |
---|---|---|---|---|---|---|---|
CS (no admixture) | |||||||
5 h | 8.53 | 6.43 | 5.04 | 0.04 | 20.75 | 17.19 | 12.59 |
10 h | 14.96 | 11.45 | 9.43 | 1.31 | 41.23 | 24.20 | 31.62 |
24 h | 15.55 | 11.81 | 3.52 | 0.74 | 19.68 | 9.12 | 21.38 |
168 h | 15.75 | 11.67 | 2.20 | 0.11 | 6.91 | 0.38 | 16.98 |
672 h | 13.46 | 10.00 | 2.16 | 0.046 | 5.90 | 0.55 | 14.79 |
JA8 (JA dose = 0.8%) | |||||||
5 h | 30.73 | 26.00 | 7.91 | 0.42 | 25.02 | 20.94 | 37.15 |
10 h | 38.08 | 33.12 | 14.55 | 2.82 | 56.52 | 47.11 | 89.13 |
24 h | 41.07 | 35.32 | 10.61 | 1.76 | 30.14 | 16.95 | 51.29 |
168 h | 21.46 | 14.42 | 5.07 | 1.03 | 14.92 | 3.38 | 33.88 |
672 h | 18.43 | 12.54 | 2.97 | 0.32 | 8.78 | 1.37 | 27.54 |
JA12 (JA dose = 1.2%) | |||||||
5 h | 49.02 | 48.26 | 6.73 | 0.77 | 5.10 | 14.32 | 81.28 |
10 h | 79.49 | 78.36 | 12.02 | 3.05 | 7.24 | 36.24 | 138.04 |
24 h | 91.73 | 90.15 | 13.82 | 2.64 | 2.94 | 14.43 | 117.49 |
168 h | 83.78 | 81.62 | 9.45 | 1.41 | 1.17 | 2.07 | 95.50 |
672 h | 37.65 | 35.16 | 4.05 | 0.84 | 0.85 | 1.80 | 72.44 |
PNS12 (PNS dose = 1.2%) | |||||||
5 h | 12.51 | 12.09 | 2.86 | 0.05 | 22.63 | 18.61 | 39.81 |
10 h | 15.96 | 15.02 | 12.83 | 1.98 | 53.02 | 36.47 | 67.61 |
24 h | 16.05 | 14.90 | 5.13 | 1.44 | 29.79 | 20.97 | 57.54 |
168 h | 12.61 | 11.28 | 3.11 | 0.39 | 12.38 | 2.59 | 35.48 |
672 h | 8.57 | 7.65 | 2.49 | 0.12 | 7.19 | 0.79 | 30.90 |
PNS18 (PNS dose = 1.8%) | |||||||
5 h | 15.37 | 14.70 | 2.32 | 0.02 | 19.38 | 18.89 | 45.20 |
10 h | 17.92 | 16.96 | 10.80 | 0.83 | 48.83 | 44.11 | 78.98 |
24 h | 19.98 | 19.12 | 4.22 | 0.35 | 24.59 | 27.26 | 77.15 |
168 h | 13.53 | 12.76 | 2.71 | 0.081 | 10.79 | 2.10 | 58.18 |
672 h | 10.99 | 10.81 | 1.89 | 0.027 | 6.69 | 0.48 | 40.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, E.; Xu, F.; Wei, H.; Qian, W.; He, Y.; Zhu, P. An Investigation on Mineral Dissolution and Precipitation in Cement-Stabilized Soils: Thermodynamic Modeling and Experimental Analysis. Appl. Sci. 2022, 12, 6843. https://doi.org/10.3390/app12146843
Ji E, Xu F, Wei H, Qian W, He Y, Zhu P. An Investigation on Mineral Dissolution and Precipitation in Cement-Stabilized Soils: Thermodynamic Modeling and Experimental Analysis. Applied Sciences. 2022; 12(14):6843. https://doi.org/10.3390/app12146843
Chicago/Turabian StyleJi, Enyue, Fei Xu, Hua Wei, Wenxun Qian, Yang He, and Pengfei Zhu. 2022. "An Investigation on Mineral Dissolution and Precipitation in Cement-Stabilized Soils: Thermodynamic Modeling and Experimental Analysis" Applied Sciences 12, no. 14: 6843. https://doi.org/10.3390/app12146843
APA StyleJi, E., Xu, F., Wei, H., Qian, W., He, Y., & Zhu, P. (2022). An Investigation on Mineral Dissolution and Precipitation in Cement-Stabilized Soils: Thermodynamic Modeling and Experimental Analysis. Applied Sciences, 12(14), 6843. https://doi.org/10.3390/app12146843