The Effects of a Natural Polyphenol Extract from Sugarcane (Saccharum officinarum) on the Growth, Survival, and Feed Conversion Efficiency of Juvenile Black Tiger Shrimp (Penaeus monodon)
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Polyphenol-Rich Sugar Cane Extract
2.2. Diets
2.3. Shrimp Husbandry
2.4. Sampling
2.5. Calculations
2.6. Data Analysis
3. Results
3.1. Shrimp Growth, Survival, and FCR after 35 Days
3.2. Shrimp Growth, Survival, and FCRs after 70 Days
3.3. Shrimp dcr1 mRNA Expression and Pathogen Levels after 70 Days
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Quintero, H.E.; Roy, L.A. Practical feed management in semi-intensive systems for shrimp culture. In The Shrimp Book; Alday-Sanz, I.V., Ed.; Replika Press: Sonipat, India; Nottingham University Press: Nottingham, UK, 2010. [Google Scholar]
- Shepherd, C.J.; Jackson, A.J. Global fishmeal and fish-oil supply: Inputs, outputs and markets. J. Fish Biol. 2013, 83, 1046–1066. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, G.W. History of shrimp farming. In The Shrimp Book; Alday-Sanz, I.V., Ed.; Nottingham University Press: Nottingham UK, 2010; pp. 1–34. [Google Scholar]
- Tu, H.T.; Silvestre, F.; Bernard, A.; Douny, C.; Phuong, N.T.; Tao, C.T.; Maghuin-Rogister, G.; Kestemont, P. Oxidative stress response of black tiger shrimp (Penaeus monodon) to enrofloxacin and to culture system. Aquaculture 2008, 285, 244–248. [Google Scholar] [CrossRef]
- Parrilla-Taylor, D.P.; Zenteno-Savín, T.; Magallón-Barajas, F.J. Antioxidant enzyme activity in Pacific whiteleg shrimp (Litopenaeus vannamei) in response to infection with white spot syndrome virus. Aquaculture 2013, 380, 41–46. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, J.; Dong, H.; Wang, Y.; Liu, Q.; Li, H. Oxidative stress response of the black tiger shrimp Penaeus monodon to Vibrio parahaemolyticus challenge. Fish Shellfish. Immunol. 2015, 46, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Done, H.Y.; Venkatesan, A.K.; Halden, R.U. Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? AAPS J. 2015, 17, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J. Antibiotic use in animals—prejudices, perceptions and realities. J. Antimicrob. Chemother. 2003, 53, 26–27. [Google Scholar] [CrossRef]
- Sies, H. Polyphenols and health: Update and perspectives. Arch. Biochem. Biophys. 2010, 501, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Bordes, C.; Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Leonard, L.; Degraeve, P. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure–activity relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar]
- Vashist, H.; Jindal, A. Antimicrobial activities of medicinal plants—Review. Int. J. Res. Pharm. Biomed. Sci. 2012, 3, 222–230. [Google Scholar]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Magrone, T.; Fontana, S.; Laforgia, F.; Dragone, T.; Jirillo, E.; Passantino, L. Administration of a polyphenol-enriched feed to farmed sea bass (Dicentrarchus labrax L.) modulates intestinal and spleen immune responses. Oxidative Med. Cell. Longev. 2016, 2016, 2827567. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Palafox, J.T.; Arredondo-Figueroa, J.L.; Vernon-Carter, E.J. Carotenoids from plants used in diets for the culture of the Pacific white shrimp (Litopenaeus vannamei). Rev. Mex. De Ing. Química 2006, 5, 157–165. [Google Scholar]
- Poongodi, R.; Saravanabhavan, P.; Muralisankar, T.; Radhakrishnan, S. Growth promoting potential of garlic, ginger, turmeric and fenugreek on the freshwater shrimp Macrobrachium rosenbergii. Int. J. Pharma Bio Sci. 2012, 3, 914–926. [Google Scholar]
- Chang, C.C.; Tan, H.C.; Cheng, W. Effects of dietary administration of water hyacinth (Eichhornia crassipes) extracts on the immune responses and disease resistance of giant freshwater shrimp, Macrobrachium rosenbergii. Fish Shellfish. Immunol. 2013, 35, 92–100. [Google Scholar] [CrossRef]
- Chithambaran, S.; David, S. Antiviral property and growth promoting potential of Punarnava, Boerhaavia diffusa in tiger shrimp culture. Indian J. Geo-Mar. Sci. 2014, 43, 2236–2243. [Google Scholar]
- Saravana Bhavan, P.; Kirubhanandhini, V.; Muralisankar, T.; Manickam, N.; Srinivasan, V. Effects of fruits wastes (apple, grape and orange) incorporations on the growth of the freshwater shrimp Macrobrachium rosenbergii. Asian J. Sci. Technol. 2013, 4, 075–081. [Google Scholar]
- Rattanavichai, W.; Cheng, W. Dietary supplement of banana (Musa acuminata) peels hot-water extract to enhance the growth, anti-hypothermal stress, immunity and disease resistance of the giant freshwater shrimp, Macrobrachium rosenbergii. Fish Shellfish. Immunol. 2015, 43, 415–426. [Google Scholar] [CrossRef]
- Chandran, M.N.; Moovendhan, S.; Suganya, A.M.; Tamilselvi, A.; Immanuel, G.; Palavesam, A. Influence of polyherbal formulation (AquaImmu) as a potential growth promotor and immunomodulator in shrimp Penaeus monodon. Aquac. Rep. 2016, 4, 143–149. [Google Scholar] [CrossRef]
- Labrador, J.R.P.; Guiñares, R.C.; Hontiveros, G.J.S. Effect of garlic powder-supplemented diets on the growth and survival of Pacific white leg shrimp (Litopenaeus vannamei). Cogent Food Agric. 2016, 2, 1210066. [Google Scholar] [CrossRef]
- Citarasu, T.; Rajajeyasekar, R.; Venkatramalingam, K.; Dhandapani, P.S.; Marian, M.P. Effect of wood apple Aegle marmelos, Correa (Dicotyledons, Sapindales, Rutaceae) extract as an antibacterial agent on pathogens infecting shrimp (Penaeus indicus) larviculture. Indian J. Geo-Mar. Sci. 2003, 32, 156–161. [Google Scholar]
- Balasubramanian, G.; Sarathi, M.; Venkatesan, C.; Thomas, J.; Hameed, S.A.S. Oral administration of antiviral plant extract of Cynodon dactylon on a large scale production against white spot syndrome virus (WSSV) in Penaeus monodon. Aquaculture 2008, 279, 2–5. [Google Scholar] [CrossRef]
- Hsieh, T.J.; Wang, J.C.; Hu, C.Y.; Li, C.T.; Kuo, C.M.; Hsieh, S.L. Effects of rutin from Toona sinensis on the immune and physiological responses of white shrimp (Litopenaeus vannamei) under Vibrio alginolyticus challenge. Fish Shellfish. Immunol. 2008, 25, 581–588. [Google Scholar] [CrossRef]
- Sorsanit, K.; Nomura, N.; Matsumura, A. Application of green tea extract in shrimp aquaculture. Fish. Sci. 2002, 68, 998–999. [Google Scholar] [CrossRef]
- Sudheer, N.S.; Philip, R.; Singh, I.S.B. In vivo screening of mangrove plants for anti-WSSV activity in Penaeus monodon, and evaluation of Ceriops tagal as a potential source of antiviral molecules. Aquaculture 2011, 311, 36–41. [Google Scholar] [CrossRef]
- Rubel, M.; Shimul, S.A.; Nahid, S.A.A. Potentials of plant polyphenols for better performance of farmed freshwater prawn (Macrobrachium rosenbergii). Bangladesh J. Vet. Anim. Sci. 2018, 6, 33–38. [Google Scholar]
- Owens, L.; Condon, K.; Rai, P.; Karunasagar, I. Diet-delivery of therapeutic RNA interference in live Escherichia coli against pre-existing Penaeus merguiensis hepandensovirus in Penaeus merguiensis. Aquaculture 2015, 437, 360–365. [Google Scholar]
- Cowley, J.A.; Rao, M.; Coman, G.J. Real-time PCR tests to specifically detect IHHNV lineages and an IHHNV EVE integrated in the genome of Penaeus monodon. Dis. Aquat. Org. 2018, 129, 145–158. [Google Scholar] [CrossRef]
- Han, J.E.; Tang, K.F.J.; Pantoja, C.R.; White, B.L.; Lightner, D.V. qPCR assay for detecting and quantifying a virulence plasmid in acute hepatopancreatic necrosis disease (AHPND) due to pathogenic Vibrio parahaemolyticus. Aquaculture 2015, 442, 12–15. [Google Scholar] [CrossRef]
- Durand, S.V.; Lightner, D.V. Quantitative real time PCR for the measurement of white spot syndrome virus in shrimp. J. Fish Dis. 2002, 25, 381–389. [Google Scholar] [CrossRef]
- de la Vega, E.; Degnan, B.M.; Hall, M.R.; Cowley, J.A.; Wilson, K.J. Quantitative real-time RT-PCR demonstrates that handling stress can lead to rapid increases of gill-associated virus (GAV) infection levels in Penaeus monodon. Dis. Aquat. Org. 2004, 59, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Cowley, J.; Moody, N.; Mohr, P.; Rao, M.; Williams, L.; Sellars, M.; Crane, M. Tactical Research Fund: Aquatic Animal Health Subprogram: Viral Presence, Prevalence and Disease Management in Wild Populations of the Australian Black Tiger Shrimp (Penaeus Monodon); FRDC_2013/036 2015; Fisheries Research and Development Corporation: Canberra, Australia, 2015. [Google Scholar]
- Su, J.; Oanh, D.T.H.; Lyons, R.E.; Leeton, L.; van Hulten, M.C.W.; Tan, S.-H.; Song, L.; Rajendran, K.V.; Walker, P.J. A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon: Identification and functional characterisation of Dicer-1. Fish Shellfish. Immunol. 2008, 24, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.A.; Khatoon, H.; Yusuf, N.; Banerjee, S.; Haris, N.A.; Lananan, F. Tetraselmis chuii biomass as a potential feed additive to improve survival and oxidative stress status of Pacific white-leg shrimp Litopenaeus vannamei postlarvae. Int. Aquat. Res. 2017, 9, 235–247. [Google Scholar] [CrossRef]
- Rungrassamee, W.; Kingcha, Y.; Srimarut, Y.; Maibunkaew, S.; Karoonuthaisiri, N.; Visessanguan, W. Mannooligosaccharides from copra meal improves survival of the Pacific white shrimp (Litopenaeus vannamei) after exposure to Vibrio harveyi. Aquaculture 2014, 434, 403–410. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Li, J.; Duan, Y.F.; Niu, J.; Wang, J.; Huang, Z.; Lin, H.Z. Effects of dietary chlorogenic acid on growth performance, antioxidant capacity of white shrimp Litopenaeus vannamei under normal condition and combined stress of low-salinity and nitrite. Fish Shellfish. Immunol. 2015, 43, 337–345. [Google Scholar] [CrossRef]
- Bao, L.; Li, J.; Zha, D.; Zhang, L.; Gao, P.; Yao, T.; Wu, X. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. Int. Immunopharmacol. 2008, 54, 245–253. [Google Scholar] [CrossRef]
- Parsaee, M.; Kiani, M.K.D.; Karimi, K. A review of biogas production from sugarcane vinasse. Biomass Bioenergy 2019, 122, 117–125. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Y.; Zhang, J.; Sun, Y.; Wang, J. Dietary effects of succinic acid on the growth, digestive enzymes, immune response and resistance to ammonia stress of Litopenaeus vannamei. Fish Shellfish. Immunol. 2018, 78, 10–17. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.S. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 2011, 317, 1–15. [Google Scholar] [CrossRef]
- Martin, G.G.; Jose, J.E. Functional anatomy of penaeid shrimp. In The Shrimp Book; Alday-Sanz, I.V., Ed.; Nottingham University Press: Nottingham, UK, 2010; pp. 47–72. [Google Scholar]
- McGaw, I.J.; Curtis, D.L. A review of gastric processing in decapod crustaceans. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 2013, 183, 443–465. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Grosse, J.; Asad, A.; Radda, G.K.; Golay, X. Gastrointestinal transit measurements in mice with 99mTc-DTPA-labeled activated charcoal using NanoSPECT-CT. EJNMMI Res. 2013, 3, 60. [Google Scholar] [CrossRef]
- Sorsanit, K.; Nomura, N.; Migo, V.P.; Matsumura, A. The use of green tea powder and green tea polyphenols for treatment of Vibrio-infected shrimp culture water. Jpn. J. Water Treat. Biol. 2002, 38, 111–115. [Google Scholar] [CrossRef]
- Kanazawa, A.; Teshima, S.I.; Sasaki, M. Requirements of the juvenile shrimp for calcium, phosphorus, magnesium, potassium, coPRSEr, manganese, and iron. Mem. Fac. Fish. Kagoshima Univ. 1984, 33, 63–71. [Google Scholar]
Diet | Polygain (g kg−1 Diet) 1 | Sucrose (g kg−1 DM) 2 | Dry Mash (g kg−1 DM) 3 | Total Additional Dietary Polyphenol Addition (mg kg−1 DM) |
---|---|---|---|---|
Control | 0 | 3.6 | 996.4 | 0 |
0.2% Polygain | 2 | 2.4 | 995.6 | 60.8 |
0.4% Polygain | 4 | 1.2 | 994.8 | 121.6 |
0.6% Polygain | 6 | 0 | 994.0 | 182.4 |
Pathogen Target | Primer Detail (5′-3′) | DNA/RNA Genome | Reference |
---|---|---|---|
HDV/HPV | qF (4440)-CTA CTC CAA TGG AAA CTT CTG AGC | DNA | [30] |
qR (4571)-GGC ACT TCC TGT ATT TTT CCC G | |||
qProbe (4471)-TAC CGC CGC ACC GCA GCA GC | |||
IHHNV/PstDV | qF-CCT AAA GAA AAC AGT GCA GAA TAT GAC | DNA | [31] |
qR-TCA TCG TCA AGT TTA TTG ACA AGT TC | |||
qProbe-CTC CAA CAC TTA GTC AAA | |||
Pir-A | qF (Han)-TTG GAC TGT CGA ACC AAA CG | DNA | [32] |
qR (Han)-GCA CCC CAT TGG TAT TGA ATG | |||
qProbe (Han)- AGACAGCAAACATACACCTATCATCCCGGA | |||
WSSV | qF (OIE)-TGG TCC CGT CCT CAT CTC AG | DNA | [33] |
qR (OIE)-GCT GCC TTG CCG GAA ATT A | |||
qProbe (OIE)-AGC CAT GAA GAA TGC CGT CTA TCA CAC A | |||
GAV | qF-GGG ATC CTA ACA TCG TCA ACG T | RNA | [34] |
qR-AGT AGT ATG GAT TAC CCT GGT GCA T | |||
qProbe-TCA GCC GCT TCC GCT TCC AAT G | |||
When-2 | qF-GGC TCT TTAGCC TGA CTT TAT CT | RNA | This publication |
qR-GCA GAG GAC AGG AAG TGA TTA | |||
qProbe-ACC TCA CTG TCT GAG TTC TGC ACA | |||
YHV-7 | qF-CAT CCA ACC TAT CGC CTA CA | RNA | [35] |
qR-TGT GAA GTC CAT GTG AAC GA | |||
qProbe-CAA CGA CAG ACA CCT CAT CCG TGA | |||
Dicer-1 | qF-TGG TAC CAA AGT CAC CCA TTA G | RNA | [36] |
qR-ACC TTC CCA TCA ACA AGA CGT T | |||
qProbe-AAC CAG AAA CAG CCA AAT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penglase, S.; Ackery, T.; Kitchen, B.; Flavel, M.; Condon, K. The Effects of a Natural Polyphenol Extract from Sugarcane (Saccharum officinarum) on the Growth, Survival, and Feed Conversion Efficiency of Juvenile Black Tiger Shrimp (Penaeus monodon). Appl. Sci. 2022, 12, 8090. https://doi.org/10.3390/app12168090
Penglase S, Ackery T, Kitchen B, Flavel M, Condon K. The Effects of a Natural Polyphenol Extract from Sugarcane (Saccharum officinarum) on the Growth, Survival, and Feed Conversion Efficiency of Juvenile Black Tiger Shrimp (Penaeus monodon). Applied Sciences. 2022; 12(16):8090. https://doi.org/10.3390/app12168090
Chicago/Turabian StylePenglase, Sam, Thomas Ackery, Barry Kitchen, Matthew Flavel, and Kelly Condon. 2022. "The Effects of a Natural Polyphenol Extract from Sugarcane (Saccharum officinarum) on the Growth, Survival, and Feed Conversion Efficiency of Juvenile Black Tiger Shrimp (Penaeus monodon)" Applied Sciences 12, no. 16: 8090. https://doi.org/10.3390/app12168090
APA StylePenglase, S., Ackery, T., Kitchen, B., Flavel, M., & Condon, K. (2022). The Effects of a Natural Polyphenol Extract from Sugarcane (Saccharum officinarum) on the Growth, Survival, and Feed Conversion Efficiency of Juvenile Black Tiger Shrimp (Penaeus monodon). Applied Sciences, 12(16), 8090. https://doi.org/10.3390/app12168090