Therapeutic Potential of Chrysin in Improving Bone Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Vitamin-D-Deficient Diet
2.3. Dose Selection for the Study
2.4. Experimental Animals
2.5. In Vivo Experimental Design
- Group I: Normal (standard laboratory diet and drinking water ad libitum).
- Group II: Disease control (fed a vitamin-D-deficient diet).
- Group III: Therapeutic intervention 1 (chrysin (100 mg/kg, po).
- Group IV: Therapeutic intervention 2 (chrysin (100 mg/kg, po) + CaCO3 (50 mg/kg, po).
- Group V: Therapeutic intervention 3 (chrysin (100 mg/kg, po) + vitamin D3 (40 IU/kg, po).
- Group VI: Therapeutic intervention 4 (chrysin (100 mg/kg, po) + CaCO3 (50 mg/kg, po) + vitamin D3 (40 IU/kg, po).
2.6. Body Weights
2.7. Biochemical Evaluation
2.8. Estimation of Urinary Parameters
2.9. Bone Parameters
2.9.1. Bone Weight
2.9.2. Bone Length
2.9.3. Bone Hardness
2.9.4. Vertebral Hardness
2.9.5. Bone Mineral Density
2.9.6. Bone Ash Content
2.10. Estimation of 25-OH-D3 by LC-MS/MS
2.11. Histopathology
2.12. Statistical Analysis
3. Results
3.1. Effect of Therapeutic Interventions on Body Weight (gm)
3.2. Effect of Therapeutic Interventions on Serum Calcium, Phosphorus, Magnesium, and ALP Levels
3.3. Effect of Therapeutic Interventions on Urinary Calcium, Magnesium, and Phosphorus Levels
3.4. Effect of Therapeutic Interventions on Bone Ash Parameters Such as Ash Weight, Calcium, Phosphorus, and Magnesium
3.5. Effect of Therapeutic Interventions on The Femur and Tibia–Fibula Weights, Lengths, and Hardness
3.6. Effect of Therapeutic Interventions on 4th Lumbar Hardness and 8th Thoracic Hardness
3.7. Effect of Therapeutic Interventions on Femur Bone Mineral Density
3.8. Effect of Therapeutic Interventions on 25-OH-D3 by LC-MS/MS
3.9. Effect of Therapeutic Interventions on Histopathology of the Femur Bone
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briggs, A.M.; Woolf, A.D.; Dreinhöfer, K.; Homb, N.; Hoy, D.G.; Kopansky-Giles, D.; Åkesson, K.; March, L. Reducing the global burden of musculoskeletal conditions. Bull. World Health Organ. 2018, 96, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Hyder, A.A.; Wosu, A.C.; Gibson, D.G.; Labrique, A.B.; Ali, J.; Pariyo, G.W.; Devarsetty, P.; Hoe, C. Noncommunicable disease risk factors and mobile phones: A proposed research agenda. J. Med. Internet Res. 2017, 19, e133. [Google Scholar] [CrossRef] [PubMed]
- Pouresmaeili, F.; Kamalidehghan, B.; Kamarehei, M.; Goh, Y.M. A comprehensive overview on osteoporosis and its risk factors. Ther. Clin. Risk Manag. 2018, 14, 2029–2049. [Google Scholar] [CrossRef]
- Kelsey, J.L. Risk factors for osteoporosis and associated fractures. Public Health Rep. 1989, 104, 14–20. [Google Scholar] [PubMed]
- Christodoulou, S.; Goula, T.; Ververidis, A.; Drosos, G. Vitamin D and bone disease. BioMed Res. Int. 2013, 2013, 396541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Naughton, D.P. Vitamin D in health and disease: Current perspectives. Nutr. J. 2010, 9, 65. [Google Scholar] [CrossRef]
- Dusso, A.S.; Brown, A.J.; Slatopolsky, E. Vitamin D. Am. J. Physiol. Ren. Physiol. 2005, 289, 8–28. [Google Scholar] [CrossRef]
- Khazai, N.; Judd, S.E.; Tangpricha, V. Calcium and vitamin D: Skeletal and extraskeletal health. Curr. Rheumatol. Rep. 2008, 10, 110–117. [Google Scholar] [CrossRef]
- Nair, P.; Venkatesh, B.; Center, J.R. Vitamin D deficiency and supplementation in critical illness—the known knowns and known unknowns. Crit. Care 2018, 22, 276. [Google Scholar] [CrossRef]
- Abulmeaty, M.M.A. Sunlight exposure vs. vitamin D supplementation on bone homeostasis of vitamin D deficient rats. Clin. Nutr. Exp. 2017, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.C.; Furlanetto, T.W. Intestinal absorption of vitamin D: A systematic review. Nutr. Rev. 2018, 76, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, H.; Hosseini, S.A.; Amani, R.; Ekrami, A.; Ahmadzadeh, A.; Latifi, S.M. Circulating 25-Hydroxy Vitamin D Relative to Vitamin D Receptor Polymorphism after Vitamin D3 Supplementation in Breast Cancer Women: A Randomized, Double-Blind Controlled Clinical Trial. Asian Pac. J. Cancer Prev. 2017, 18, 1953–1959. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, Y.S.; Zheng, X.E.; Senn, T.; Hashizume, T.; Scian, M.; Dickmann, L.J.; Nelson, S.D.; Baillie, T.A.; Hebert, M.F.; et al. An Inducible Cytochrome P450 3A4-Dependent Vitamin D Catabolic Pathway. Mol. Pharmacol. 2012, 81, 498–509. [Google Scholar] [CrossRef]
- Wang, Z.; Schuetz, E.G.; Xu, Y.; Thummel, K.E. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J. Steroid Biochem. Mol. Biol. 2013, 136, 54–58. [Google Scholar] [CrossRef]
- Ogu, C.C.; Maxa, J.L. Drug Interactions Due to Cytochrome P450. Bayl. Univ. Med. Cent. Proc. 2000, 13, 421–423. [Google Scholar] [CrossRef]
- Kearns, M.D.; Alvarez, J.A.; Tangpricha, V. Large, Single-Dose, Oral Vitamin D Supplementation in Adult Populations: A Systematic Review. Endocr. Pract. 2014, 20, 341–351. [Google Scholar] [CrossRef]
- Mohos, V.; Fliszár-Nyúl, E.; Ungvári, O.; Bakos, É.; Kuffa, K.; Bencsik, T.; Zsidó, B.Z.; Hetényi, C.; Telbisz, Á.; Özvegy-Laczka, C.; et al. Effects of Chrysin and Its Major Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide on Cytochrome P450 Enzymes and on OATP, P-gp, BCRP, and MRP2 Transporters. Drug Metab. Dispos. 2020, 48, 1064–1073. [Google Scholar] [CrossRef]
- Sergent, T.; Dupont, I.; Van Der Heiden, E.; Scippo, M.-L.; Pussemier, L.; Larondelle, Y.; Schneider, Y.-J. CYP1A1 and CYP3A4 modulation by dietary flavonoids in human intestinal Caco-2 cells. Toxicol. Lett. 2009, 191, 216–222. [Google Scholar] [CrossRef]
- Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018, 145, 187–196. [Google Scholar] [CrossRef]
- Zych, M.; Kamińska, E. Effect of Chrysin on the Mechanical Properties of Bones in Ovariectomized Rats. 2015. Available online: https://www.researchgate.net/publication/282125323 (accessed on 29 August 2022).
- Coman, C.; Vlase, E. Formulation, Preparation and Chemical Analysis of Purified Diets for Laboratory Mice and Rats. Sci. Work. 2017, 63, 149–154. [Google Scholar]
- Mallya, S.M.; Corrado, K.R.; Saria, E.A.; Yuan, F.-N.F.; Tran, H.Q.; Saucier, K.; Atti, E.; Tetradis, S.; Arnold, A. Modeling vitamin D insufficiency and moderate deficiency in adult mice via dietary cholecalciferol restriction. Endocr. Res. 2016, 41, 290–299. [Google Scholar] [CrossRef]
- Oršolić, N.; Goluža, E.; Đikić, D.; Lisičić, D.; Sašilo, K.; Rođak, E.; Jeleč, Ž.; Lazarus, M.V.; Orct, T. Role of flavonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat. Eur. J. Nutr. 2014, 53, 1217–1227. [Google Scholar] [CrossRef]
- Khoshvaghti, A.; Kouhnavard, M.; Esfahani, E.N.; Montazeri, M.; Larijani, B.; Asl, A.N.; Falsafi, A.; Lalehfar, K.; Malekpour, K.; Vosugh, M.; et al. Effects of Vitamin D and Calcium Supplementation on Micro-architectural and Densitometric Changes of Rat Femur in a Microgravity Simulator Model. Iran. Red. Crescent Med. J. 2014, 16, e18026. [Google Scholar] [CrossRef] [PubMed]
- Soni, H.K.; Kandachia, J.M.; Jani, D.K.; Patel, G.R. Pharmacological Investigation of Bonton Capsule for Anti-osteoporotic Activity in Ovariectomized Rat. Int. J. Pharm. Phytopharm. Res. 2013, 3, 52–56. [Google Scholar]
- Adamec, J.; Jannasch, A.; Huang, J.; Hohman, E.; Fleet, J.C.; Peacock, M.; Ferruzzi, M.G.; Martin, B.; Weaver, C.M. Development and optimization of an LC-MS/MS-based method for simultaneous quantification of vitamin D2, vitamin D3, 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. J. Sep. Sci. 2011, 34, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Yogesh, H.; Chandrashekhar, V.; Katti, H.; Ganapaty, S.; Raghavendra, H.; Gowda, G.K.; Goplakhrishna, B. Anti-osteoporotic activity of aqueous-methanol extract of Berberis aristata in ovariectomized rats. J. Ethnopharmacol. 2011, 134, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Chitme, H.; Muchandi, I.S.; Burli, S.C. Effect of Asparagus Racemosus Willd Root Extract on Ovariectomized Rats. Open Nat. Prod. J. 2009, 2, 16–23. [Google Scholar] [CrossRef]
- Lucinda, L.M.; Aarestrup, B.J.; Reboredo, M.M.; Pains, T.D.; Chaves, R.Z.; Reis, J.E.; Louzada, M.J.; Guerra, M.O. Evaluation of the anti-osteoporotic effect of Ginkgo biloba L. in Wistar rats with glucocorticoid-induced-osteoporosis by bone densitometry using dual-energy x-ray absorptiometry (DEXA) and mechanical testing. An. Acad. Bras. Ciências 2017, 89, 2833–2841. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Briody, J.; Howman-Giles, R.; Trube, A.; Cowell, C. DXA for bone density measurement in small rats weighing 150–250 grams. Bone 1994, 15, 199–202. [Google Scholar] [CrossRef]
- Zhang, S.; Jian, W.; Sullivan, S.; Sankaran, B.; Edom, R.W.; Weng, N.; Sharkey, D. Development and validation of an LC–MS/MS based method for quantification of 25 hydroxyvitamin D2 and 25 hydroxyvitamin D3 in human serum and plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 961, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Shirwaikar, A.; Khan, S.; Malini, S. Antiosteoporotic effect of ethanol extract of Cissus quadrangularis Linn. on ovariectomized rat. J. Ethnopharmacol. 2003, 89, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Schwalfenberg, G.K.; Genuis, S.J. Vitamin D, Essential Minerals, and Toxic Elements: Exploring Interactions between Nutrients and Toxicants in Clinical Medicine. Sci. World J. 2015, 2015, 318595. [Google Scholar] [CrossRef] [PubMed]
- Alswat, K.A. Gender Disparities in Osteoporosis. J. Clin. Med. Res. 2017, 9, 382–387. [Google Scholar] [CrossRef]
- Toromanoff, A.; Ammann, P.; Mosekilde, L.; Thomsen, J.S.; Riond, J.-L. Parathyroid Hormone Increases Bone Formation and Improves Mineral Balance in Vitamin D-Deficient Female Rats*. Endocrinology 1997, 138, 2449–2457. [Google Scholar] [CrossRef]
- Keenan, M.J.; Hegsted, M.; Siver, F.; Mohan, R.; Wozniak, P. Recovery of Rats from Vitamin D-Deficient Mothers. Ann. Nutr. Metab. 1991, 35, 315–327. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kawanobe, Y.; Takahashi, H.; Shimazawa, E.; Kimura, S.; Ogata, E. Vitamin D deficiency and renal calcium transport in the rat. J. Clin. Investig. 1984, 74, 507–513. [Google Scholar] [CrossRef]
- Grigoryan, A.V.; Dimitrova, A.A.; Kostov, K.G.; Russeva, A.L.; Atanasova, M.A.; Blagev, A.B.; Betova, T.M.; Trifonov, R.G. Changes of Serum Concentrations of Alkaline Phosphatase and Metalloproteinase-9 in an Ovariectomized Wistar Rat Model of Osteoporosis. J. Biomed. Clin. Res. 2017, 10, 32–36. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Xiong, Y.; Lee, C.J. Bone composition and strength of female rats subjected to different rates of weight reduction. Nutr. Res. 2000, 20, 1613–1622. [Google Scholar] [CrossRef]
- Yang, X.; Li, F.; Yang, Y.; Shen, J.; Zou, R.; Zhu, P.; Zhang, C.; Yang, Z.; Li, P. Efficacy and Safety of Echinacoside in a Rat Osteopenia Model. Evid.-Based Complement. Altern. Med. 2013, 2013, 926928. [Google Scholar] [CrossRef]
- Halekunche, Y.; Burdipad, G.; Kuppusamy, S.; Janadri, S. Anti-osteoporotic activity of ethanol extract of Punica granatum leaves on ovariectomized rats. Asian J. Pharm. Pharmacol. 2016, 2, 85–92. [Google Scholar]
- Mustafa, R.A.; Alfky, N.A.; Hijazi, H.H.; Header, E.A.; Azzeh, F.S. Biological effect of calcium and vitamin D dietary supplements against osteoporosis in ovariectomized rats. Prog. Nutr. 2018, 20, 86–93. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D Status: Measurement, Interpretation, and Clinical Application. Ann. Epidemiol. 2009, 19, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fossey, S.; Vahle, J.; Long, P.; Schelling, S.; Ernst, H.; Boyce, R.W.; Jolette, J.; Bolon, B.; Bendele, A.; Rinke, M.; et al. Nonproliferative and Proliferative Lesions of the Rat and Mouse Skeletal Tissues (Bones, Joints, and Teeth). J. Toxicol. Pathol. 2016, 29, 49S–103S. [Google Scholar] [CrossRef] [Green Version]
Parameters | Body Weight (gm) | Calcium (mg/dL) | Phosphorus (mg/dL) | Magnesium (mg/dL) | ALP (mg/dL) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Days | 7th | 28th | 7th | 28th | 7th | 28th | 7th | 28th | 7th | 28th |
Group I | 167.9 ± 0.91 | 166.6 ± 2.22 | 7.24 ± 0.38 | 9.83 ± 0.55 | 11.19 ± 1.00 | 11.53 ± 0.58 | 1.87 ± 0.28 | 1.76 ± 0.28 | 17.04 ± 0.91 | 17.52 ± 1.88 |
Group II | 162.4 ± 1.24 # | 155 ± 1.92 # | 7.24 ± 0.39 | 9.60 ± 0.68 | 9.024 ± 0.98 # | 9.12 ± 0.61 # | 1.34 ± 0.41 | 1.16 ± 0.27 # | 19.26 ± 0.63 # | 29.63 ± 1.74 # |
Group III | 156.66 ± 2.1 * | 162.5 ± 0.96 * | 7.29 ± 0.47 * | 11.12 ± 0.34 * | 9.98 ± 0.66 | 10.2 ± 0.52 * | 1.66 ± 0.32 | 1.98 ± 0.18 * | 17.45 ± 0.58 * | 15.31 ± 1.45 * |
Group IV | 161.6 ± 1.04 | 156.66 ± 1.24 | 7.50 ± 0.85 * | 11.63 ± 1.14 * | 10.08 ± 0.96 * | 11.81 ± 0.78 * | 2.06 ± 0.25 * | 2.18 ± 0.35 * | 17.83 ± 0.84 | 16.51 ± 1.53 * |
Group V | 173.3 ± 0.96 * | 165 ± 2.35 * | 7.69 ± 0.84 * | 11.56 ± 0.51 * | 9.84 ± 0.72 * | 12.08 ± 0.85 * | 1.67 ± 0.35 * | 2.01 ± 0.24 * | 17.92 ± 0.12 | 15.15 ± 1.30 * |
Group VI | 162.85 ± 2.51 | 171.6 ± 2.63 * | 7.55 ± 0.32 * | 12.53 ± 0.43 * | 10.95 ± 0.83 * | 12.04 ± 0.83 * | 1.95 ± 0.41 * | 2.08 ± 0.28 * | 17.63 ± 0.49 | 13.50 ± 1.37 * |
Parameters | Calcium (mg/dL) | Phosphorus (mg/dL) | Magnesium (mg/dL) | |||
---|---|---|---|---|---|---|
Days | 7th | 28th | 7th | 28th | 7th | 28th |
Group I | 6.68 ± 0.49 | 6.98 ± 0.40 | 1.21 ± 0.02 | 2.91 ± 0.22 | 1.4 ± 0.06 | 2.45 ± 0.022 |
Group II | 7.73 ± 0.59 | 10.40 ± 0.38 # | 1.03 ± 0.021 | 4.61 ± 0.19 # | 1.98 ± 0.098 # | 4.88 ± 0.98 # |
Group III | 6.88 ± 0.30 * | 6.05 ± 0.22 * | 0.88 ± 0.01 | 2.31 ± 0.12 * | 0.92 ± 0.021 * | 2.94 ± 1.20 * |
Group IV | 6.76 ± 0.73 * | 5.11 ± 0.42 * | 1.63 ± 0.09 | 1.97 ± 0.12 * | 1.02 ± 0.065 * | 1.99 ± 0.06 * |
Group V | 6.165 ± 0.67 * | 5.00 ± 0.41 * | 1.92 ± 0.06 | 2.01 ± 0.11 * | 1.24 ± 0.08 | 2.42 ± 0.071 * |
Group VI | 6.66 ± 0.39 * | 4.6 ± 0.23 * | 1.52 ± 0.087 | 2.55 ± 0.24 * | 1.11 ± 0.056 * | 3.01 ± 0.06 * |
Parameters | Bone Ash Content | BMD | |||
---|---|---|---|---|---|
Ash Weight (g) | Calcium (mg/dL) | Phosphorus (mg/dL) | Magnesium (mg/dL) | Femoral Bone Mineral Density (g/cm2) | |
Group I | 0.79 ± 0.64 | 17.40 ± 1.01 | 9.29 ± 0.48 | 5.05 ± 0.36 | 0.158 ± 0.007 |
Group II | 0.66 ± 0.80 # | 15.16 ± 0.80 # | 9.23 ± 0.44 | 4.98 ± 0.17 | 0.140 ± 0.0015 # |
Group III | 0.82 ± 0.69 * | 18.20 ± 0.96 * | 9.85 ± 0.75 | 5.21 ± 0.18 | 0.154 ± 0.011 * |
Group IV | 0.95 ± 1.43 * | 19.38 ± 0.66 * | 11.34 ± 1.09 * | 5.21 ± 0.18 | 0.161 ± 0.008 * |
Group V | 0.86 ± 1.50 * | 17.45 ± 0.72 * | 10.46 ± 1.11 * | 5.10 ± 0.32 | 0.169 ± 0.0095 * |
Group VI | 0.98 ± 0.99 * | 18.59 ± 0.86 * | 11.34 ± 1.06 * | 5.13 ± 0.41 | 0.186 ± 0.003 * |
Parameters | Femur | Tibia-Fibula | ||||
---|---|---|---|---|---|---|
Length (cm) | Weight (gm) | Hardness (N) | Length (cm) | Weight (gm) | Hardness (N) | |
Group I | 2.93 ± 0.10 | 0.74 ± 0.06 | 9.8 ± 0.21 | 3.27 ± 0.23 | 0.72 ± 0.036 | 14.17 ± 2.44 |
Group II | 2.93 ± 0.19 | 0.61 ± 0.08 # | 8.94 ± 0.12 # | 3.23 ± 0.27 | 0.55 ± 0.07 # | 6.98 ± 1.91 # |
Group III | 3.02 ± 0.10 | 0.74 ± 0.03 * | 9.93 ± 0.24 * | 3.55 ± 0.27 | 0.66 ± 0.035 * | 11.91 ± 2.10 * |
Group IV | 3.08 ± 0.12 | 0.74 ± 0.06 * | 10.43 ± 0.83 * | 3.60 ± 0.21 | 0.74 ± 0.066 * | 13.86 ± 1.52 * |
Group V | 3.03 ± 0.15 | 0.79 ± 0.05 * | 10.02 ± 0.41 * | 3.57 ± 0.38 | 0.75 ± 0.096 * | 14.39 ± 2.213 * |
Group VI | 3.13 ± 0.12 | 0.88 ± 0.06 * | 11.76 ± 0.67 * | 3.65 ± 0.33 | 0.84 ± 0.016 * | 15.60 ± 2.70 * |
Groups | 4th Lumbar Hardness (N) | 8th Thoracic Hardness (N) |
---|---|---|
Group I | 14.64 ± 0.96 | 15.66 ± 1.64 |
Group II | 10.66 ± 0.71 # | 10.21 ± 1.45 # |
Group III | 12.96 ± 0.85 * | 14.26 ± 1.21 * |
Group IV | 15.20 ± 1.01 * | 14.94 ± 1.99 * |
Group V | 14.96 ± 1.86 * | 15.21 ± 0.98 * |
Group VI | 15.62 ± 1.59 * | 16.04 ± 1.29 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasarla, S.S.; Dodoala, S.; Sampathi, S.; Talluri, N.K.; Junnuthula, V.; Dyawanapelly, S. Therapeutic Potential of Chrysin in Improving Bone Health. Appl. Sci. 2022, 12, 8728. https://doi.org/10.3390/app12178728
Kasarla SS, Dodoala S, Sampathi S, Talluri NK, Junnuthula V, Dyawanapelly S. Therapeutic Potential of Chrysin in Improving Bone Health. Applied Sciences. 2022; 12(17):8728. https://doi.org/10.3390/app12178728
Chicago/Turabian StyleKasarla, Siva Swapna, Sujatha Dodoala, Sunitha Sampathi, Narendra Kumar Talluri, Vijayabhaskarreddy Junnuthula, and Sathish Dyawanapelly. 2022. "Therapeutic Potential of Chrysin in Improving Bone Health" Applied Sciences 12, no. 17: 8728. https://doi.org/10.3390/app12178728
APA StyleKasarla, S. S., Dodoala, S., Sampathi, S., Talluri, N. K., Junnuthula, V., & Dyawanapelly, S. (2022). Therapeutic Potential of Chrysin in Improving Bone Health. Applied Sciences, 12(17), 8728. https://doi.org/10.3390/app12178728