RGB-D Camera for 3D Laser Point Cloud Hole Repair in Mine Access Shaft Roadway
Abstract
:1. Introduction
2. Principle of 3D Reconstruction of RGB-D Camera
3. Data Acquisition
3.1. Overview of the Study Area
3.2. Data acquisition of Ground 3D Laser Scanner
3.3. Data Acquisition of RGB-D Camera
4. Data Processing
4.1. Data Processing of Ground 3D Laser Scanning
4.1.1. Point Cloud Denoising
4.1.2. Point Cloud Denoising
4.2. Data Processing of the RGB-D Camera
4.3. Comparative Analysis of Two Kinds of Data
5. Repair of Point Cloud
5.1. Point Cloud Repairing of FPFH + ICP Algorithm
5.2. Point Cloud Repairing of ISS + ICP Algorithm
5.3. Point Cloud Patching of SVD + ICP Algorithm
5.4. Point Cloud Patching of 3D-NDT Algorithm
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teng, C.-H.; Chuo, K.-Y.; Hsieh, C.-Y. Reconstructing three-dimensional models of objects using a Kinect sensor. Vis. Comput. 2017, 34, 1507–1523. [Google Scholar] [CrossRef]
- Liu, G.H.; Duan, J.C. A deep image hole repairing method and a superpixel segmentation algorithm based on Kinect camara. Comput. Eng. Sci. 2020, 42, 851–858. [Google Scholar] [CrossRef]
- Mathey, M. Modelling coal pillar stability from mine survey plans in a geographic information system. J. S. Afr. Inst. Min. Metall. 2018, 118, 157–164. [Google Scholar] [CrossRef]
- Khorasani, M.; Ghasemi, A.; Leary, M.; Sharabian, E.; Cordova, L.; Gibson, I.; Downing, D.; Bateman, S.; Brandt, M.; Rolfe, B. The effect of absorption ratio on meltpool features in laser-based powder bed fusion of IN718. Opt. Laser Technol. 2022, 153, 108263. [Google Scholar] [CrossRef]
- Wang, D.; Wei, X.; Liu, J.; Xiao, Y.; Yang, Y.; Liu, L.; Tan, C.; Yang, X.; Han, C. Lightweight design of an AlSi10Mg aviation control stick additively manufactured by laser powder bed fusion. Rapid Prototyp. J. 2022; ahead of print. [Google Scholar] [CrossRef]
- Linares, J.-M.; Chaves-Jacob, J.; Lopez, Q.; Sprauel, J.-M. Fatigue life optimization for 17-4Ph steel produced by selective laser melting. Rapid Prototyp. J. 2022, 28, 1182–1192. [Google Scholar] [CrossRef]
- Ettaieb, K.; Godineau, K.; Lavernhe, S.; Tournier, C. Offline laser power modulation in LPBF additive manufacturing including kinematic and technological constraints. Rapid Prototyp. J. 2022; ahead of print. [Google Scholar] [CrossRef]
- Gikas, V. Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway Tunnels during Excavation. Sensors 2012, 12, 11249–11270. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Demers, D.; Locat, J.; Locat, A.; Locat, P.; Oppikofer, T.; Robitaille, D.; Turmel, D. Use of terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational landslides in river banks. Can. Geotech. J. 2009, 46, 1379–1390. [Google Scholar] [CrossRef]
- Wajs, J.; Kasza, D.; Zagożdżon, P.P.; Zagożdżon, K.D. 3D modeling of underground objects with the use of SLAM technology on the example of historical mine in Ciechanowice (Ołowiane Range, The Sudetes). E3S Web Conf. 2018, 29, 24. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Hu, Q.; Wang, H.; Huang, X.; Li, L.; Ji, S. Continuous Mapping Convolution for Large-Scale Point Clouds Semantic Segmentation. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhou, Q.-Y.; Koltun, V. Color map optimization for 3D reconstruction with consumer depth cameras. ACM Trans. Graph. 2014, 33, 1–10. [Google Scholar] [CrossRef]
- Zhou, Q.-Y.; Koltun, V. Dense scene reconstruction with points of interest. ACM Trans. Graph. 2013, 32, 1–8. [Google Scholar] [CrossRef]
- Cui, W.; Chen, H.; Liu, W.H. Hole Surface Repairing for Laser Triangular Mesh Point Cloud, Laser. Optoelectronics. Progress 2021, 58, 344–355. [Google Scholar] [CrossRef]
- Wang, C.X.; Hao, L.W.; Wang, Y.; Ji, K.H.; Liu, L. Review of hole repair in point cloud model, Modern. Manufacturing. Engineering 2020, 9, 156–162. [Google Scholar] [CrossRef]
- Chen, F.Z.; Chen, Z.Y.; Ding, Z.; Ye, X.Z.; Zhang, S.Y. Filling Holes in Cloud with Radial Basis Function. J. Comput. Aided Des. Comput. Graph. 2009, 18, 1414–1419. [Google Scholar] [CrossRef]
- Geng, J. Structured-light 3D surface imaging: A tutorial. Adv. Opt. Photonics 2011, 3, 128–160. [Google Scholar] [CrossRef]
- Dorrington, A.A.; Kelly, C.B.D.; McClure, S.H.; Payne, A.D.; Cree, M.J. Advantages of 3d time-of-flight range imaging cameras in machine vision applications. In Proceedings of the 16th Electronics New Zealand Conference (ENZCon), Dunedin, New Zealand, 18–20 November 2009; pp. 95–99. Available online: http://hdl.handle.net/10289/4033 (accessed on 18 November 2009).
- Ganapathi, V.; Plagemann, C.; Koller, D.; Thrun, S. Real time motion capture using a single time-of-flight camera. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 755–762. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, J.; Li, J. Variable support-weight approach for correspondence search based on modified census transform. In Proceedings of the 2012 IEEE 11th International Conference on Signal Processing, Beijing, China, 21–25 October 2012; Volume 2, pp. 1040–1043. [Google Scholar] [CrossRef]
- Bisheng, Y.; Fuxun, L.; Ronggang, H. Progress, challenges and perspectives of 3D LiDAR point cloud processing. Acta Geod. Cartogr. Sin. 2017, 46, 1509–1516. [Google Scholar] [CrossRef]
- Zang, Y.F. Spatial Alignment of Multi-platform Point Clouds and On-demand 3D Modeling. Acta Geod. Cartogr. Sin. 2018, 47, 1693. [Google Scholar] [CrossRef]
- Tadic, V.; Odry, A.; Burkus, E.; Kecskes, I.; Kiraly, Z.; Klincsik, M.; Sari, Z.; Vizvari, Z.; Toth, A.; Odry, P. Painting Path Planning for a Painting Robot with a RealSense Depth Sensor. Appl. Sci. 2021, 11, 1467. [Google Scholar] [CrossRef]
- Zheng, M.H.; Zang, Y.F.; Liang, F.X.; Yang, B.S. Registration Method Research of Terrestrial Laser Point Clouds from Different Scenarios. Bull. Surv. Mapp. 2015, 8, 30–34. [Google Scholar] [CrossRef]
- Chen, L.L.; Sui, L.C.; Jiang, T.; Xue, Y.; Huang, W.C. The Methods of Data Registration in Terrestial 3D Laser Scanning. Bull. Surv. Mapp. 2014, 5, 80–82. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar] [CrossRef]
- Zhong, Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009; pp. 689–696. [Google Scholar] [CrossRef]
- Audette, M.A.; Ferrie, F.P.; Peters, T.M. An algorithmic overview of surface registration techniques for medical imaging. Med. Image Anal. 2000, 4, 201–217. [Google Scholar] [CrossRef]
- Merzouk, N.K.; Merzouk, M.; Messen, N. A mass consistent model application to the study of phenomenon in advance of sand towards the Algerian High Plains. Renew. Energy 2003, 28, 655–663. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning point cloud views using persistent feature histograms. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3384–3391. [Google Scholar] [CrossRef]
Algorithm | Registered RMSE Interval (m) | Total Points of Point Cloud Data (RGB-D/TLS) | Number of Points of Point Cloud Data Involved in RMSE Calculation | RMSE (mm) |
---|---|---|---|---|
FPTH + ICP | 0.003 | 1,388,470/726,820 | 27,057 | 19.0657 |
ISS + ICP | 0.003 | 1,388,470/726,820 | 28,153 | 13.8524 |
SVD + ICP | 0.003 | 1,388,470/726,820 | 27,251 | 22.3248 |
3D-NDT | 0.003 | 1,388,470/726,820 | 27,449 | 31.9413 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, H.; Xia, Y.; He, X.; Wu, X.; Li, C.; Yan, M.; Kong, X.; Yang, M. RGB-D Camera for 3D Laser Point Cloud Hole Repair in Mine Access Shaft Roadway. Appl. Sci. 2022, 12, 8910. https://doi.org/10.3390/app12178910
Tai H, Xia Y, He X, Wu X, Li C, Yan M, Kong X, Yang M. RGB-D Camera for 3D Laser Point Cloud Hole Repair in Mine Access Shaft Roadway. Applied Sciences. 2022; 12(17):8910. https://doi.org/10.3390/app12178910
Chicago/Turabian StyleTai, Haoyu, Yonghua Xia, Xiangrong He, Xuequn Wu, Chen Li, Min Yan, Xiali Kong, and Minglong Yang. 2022. "RGB-D Camera for 3D Laser Point Cloud Hole Repair in Mine Access Shaft Roadway" Applied Sciences 12, no. 17: 8910. https://doi.org/10.3390/app12178910
APA StyleTai, H., Xia, Y., He, X., Wu, X., Li, C., Yan, M., Kong, X., & Yang, M. (2022). RGB-D Camera for 3D Laser Point Cloud Hole Repair in Mine Access Shaft Roadway. Applied Sciences, 12(17), 8910. https://doi.org/10.3390/app12178910