Crude Polysaccharide Fraction from Rosa rugosa Thunb. Root—Chemical Characterisation, Enzyme Inhibitory, Antioxidant and Antiproliferative Activity
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Extraction of Crude Polysaccharide (CPL-Rx)
2.4. Analyses of the Chemical Composition
2.4.1. Sugar Content
2.4.2. Uronic Acid Content
2.4.3. Total Phenolic Content (TPC)
2.4.4. Content of Proteins
2.4.5. Determination of the Glucan Content
2.4.6. High-Performance Capillary Electrophoresis (HPCE) Analysis of the Monosaccharide Composition
2.4.7. SDS-PAGE
2.4.8. Identification of Protein in CPL-Rx—Liquid Chromatography Mass Spectrometry and Analysis of Mass Spectrometry Data
2.5. Biological Activity of Crude Polysaccharide from R. rugosa Roots
2.5.1. Inhibition of Cyclooxygenase (COX) Activity
2.5.2. Inhibition of Hyaluronidase (HYAL) Activity
2.5.3. TEAC (Trolox Equivalent Antioxidant Capacity) Assay
2.5.4. DPPH Radical Scavenging Activity
2.5.5. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.5.6. Antiproliferative Activity
Cell Culture
Antiproliferative Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Preliminary Chemical Characterisation of R. rugosa Root Polysaccharides
3.2. Monosaccharide Composition Analysis
3.3. Detection of Proteins and Their Complexes in CPL-Rx
3.4. Result of LC-MS Analysis—Protein Identification
3.5. Bio-Medical Potential of CPL-Rx
3.5.1. Inhibition of Pro-Inflammatory Enzymes
3.5.2. Antioxidative Activity
3.5.3. Antiproliferative Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). J. Polym. Environ. 2021, 29, 2359–2371. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, H.; Zhang, K.; Lu, Y.; Wu, Q.; Chen, J.; Li, Y.; Wu, Q.; Chen, Y. Extraction, purification, structural characterization, and gut microbiota relationship of polysaccharides: A review. Int. J. Biol. Macromol. 2022, 213, 967–986. [Google Scholar] [CrossRef]
- Ji, X.; Shen, Y.; Guo, X. Isolation, structures, and bioactivities of the polysaccharides from Gynostemma pentaphyllum (Thunb.) Makino: A review. BioMed Res. Int. 2018, 2018, 6285134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowacka-Jechalke, N.; Nowak, R.; Lemieszek, M.K.; Rzeski, W.; Gawlik-Dziki, U.; Szpakowska, N.; Kaczyński, Z. Promising potential of crude polysaccharides from Sparassis crispa against colon cancer: An in vitro study. Nutrients 2021, 13, 161. [Google Scholar] [CrossRef]
- Chen, H.; Liu, N.; He, F.; Liu, Q.; Xu, X. Specific β-glucans in chain conformations and their biological functions. Polym. J. 2022, 54, 427–453. [Google Scholar] [CrossRef]
- Fan, X.; Bai, L.; Lin, L.; Liao, D.; Gong, Y.; Liu, X.; Wang, Z.; Li, C. Studies on the chemical constituents and quality evaluation of Rosa cymosa Tratt. root. J. Sep. Sci. 2020, 43, 4379–4389. [Google Scholar] [CrossRef] [PubMed]
- Olech, M.; Nowak, R.; Łoś, R.; Rzymowska, J.; Malm, A.; Chrusciel, K. Biological activity and composition of teas and tinctures prepared from Rosa rugosa Thunb. Cent. Eur. J. Biol. 2012, 7, 172–182. [Google Scholar] [CrossRef]
- Li, N.; Wang, K.; Li, S.; Zhai, X.; Wang, T.; Ma, W.; Hu, J.; Wang, S. Flavonoids and Triterpenoids from the Roots of Rosa laevigata. J. Mex. Chem. Soc. 2014, 58, 4. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Chemposov, V.V.; Chirikova, N.K. Metabolites of Prickly Rose: Chemodiversity and Digestive-Enzyme-Inhibiting Potential of Rosa acicularis and the Main Ellagitannin Rugosin D. Plants 2021, 10, 2525. [Google Scholar] [CrossRef] [PubMed]
- Olech, M.; Nowak, R.; Nowacka, N.; Pecio, Ł.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Evaluation of rose roots, a post-harvest plantation residue as a source of phytochemicals with radical scavenging, cytotoxic, and antimicrobial activity. Ind. Crops Prod. 2015, 69, 129–136. [Google Scholar] [CrossRef]
- Olech, M.; Nowak, R.; Załuski, D.; Kapusta, I.; Amarowicz, R.; Oleszek, W. Hyaluronidase, acetylcholinesterase inhibiting potential, antioxidant activity, and LC-ESI-MS/MS analysis of polyphenolics of rose (Rosa rugosa Thunb.) teas and tinctures. Int. J. Food Prop. 2017, 20, S16–S25. [Google Scholar] [CrossRef] [Green Version]
- Olech, M.; Nowacka-Jechalke, N.; Masłyk, M.; Martyna, A.; Pietrzak, W.; Kubiński, K.; Załuski, D.; Nowak, R. Polysaccharide-rich fractions from Rosa rugosa Thunb.-composition and chemopreventive potential. Molecules 2019, 24, 1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, T.B.; Pi, Z.F.; Yue, H.; Zhao, L.; Fu, M.; Li, L.; Hou, J.; Shi, L.S.; Chen, R.R.; Jiang, Y.; et al. A polysaccharopeptide complex and a condensed tannin with antioxidant activity from dried rose (Rosa rugosa) flowers. J. Pharm. Pharmacol. 2006, 58, 529–534. [Google Scholar] [CrossRef]
- He, C.; Zhang, R.; Jia, X.; Dong, L.; Ma, Q.; Zhao, D.; Sun, Z.; Zhang, M.; Huang, F. Variation in characterization and probiotic activities of polysaccharides from litchi pulp fermented for different times. Front. Nutr. 2022, 9, 1942. [Google Scholar] [CrossRef] [PubMed]
- Olech, M.; Nowak, R. Influence of different extraction procedures on the antiradical activity and phenolic profile of Rosa rugosa petals. Acta Pol. Pharm. Drug Res. 2012, 69, 501–507. [Google Scholar]
- Rovio, S.; Yli-Kauhaluoma, J.; Sirén, H. Determination of neutral carbohydrates by CZE with direct UV detection. Electrophoresis 2007, 28, 3129–3135. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Malinowska, A.; Kistowski, M.; Bakun, M.; Rubel, T.; Tkaczyk, M.; Mierzejewska, J.; Dadlez, M. Diffprot—Software for non-parametric statistical analysis of differential proteomics data. J. Proteom. 2012, 75, 4062–4073. [Google Scholar] [CrossRef]
- Yahaya, Y.A.; Don, M.M. Evaluation of Trametes lactinea extracts on the inhibition of hyaluronidase, lipoxygenase and xanthine oxidase activities in vitro. J. Phys. Sci. 2012, 23, 1–15. [Google Scholar]
- Łyko, L.; Olech, M.; Nowak, R. LC-ESI-MS/MS Characterization of Concentrated Polyphenolic Fractions from Rhododendron luteum and Their Anti-Inflammatory and Antioxidant Activities. Molecule 2022, 27, 827. [Google Scholar] [CrossRef]
- Dienaitė, L.; Pukalskas, A.; Pukalskienė, M.; Pereira, C.V.; Matias, A.A.; Venskutonis, P.R. Phytochemical composition, antioxidant and antiproliferative activities of defatted sea buckthorn (Hippophaë rhamnoides L.) berry pomace fractions consecutively recovered by pressurized ethanol and water. Antioxidants 2020, 9, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olech, M.; Łyko, L.; Nowak, R. Influence of accelerated solvent extraction conditions on the LC-ESI-MS/MS polyphenolic profile, triterpenoid content, and antioxidant and anti-lipoxygenase activity of Rhododendron luteum Sweet leaves. Antioxidants 2020, 9, 822. [Google Scholar] [CrossRef] [PubMed]
- Vaclav, V.; Petr, S.; Luca, V. Beta Glucan as Therapeutic Food. In Therapeutic Foods, 1st ed.; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 239–256. [Google Scholar]
- Yang, W.; Huang, G. Extraction methods and activities of natural glucans. Trends Food Sci. Technol. 2021, 112, 50–57. [Google Scholar] [CrossRef]
- Reddy Shetty, P.; Batchu, U.R.; Buddana, S.K.; Sambasiva Rao, K.R.S.; Penna, S. A comprehensive review on α-D-Glucans: Structural and functional diversity, derivatization and bioapplications. Carbohydr. Res. 2021, 503, 108297. [Google Scholar] [CrossRef] [PubMed]
- Dourado, F.; Vasco, P.; Gama, F.M.; Coimbra, M.A.; Mota, M. Characterisation of Rosa mosqueta seeds: Cell wall polysaccharide composition and light microscopy observations. J. Sci. Food Agric. 2000, 80, 1859–1865. [Google Scholar] [CrossRef]
- Liu, D.; Tang, W.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocoll. 2021, 116, 106641. [Google Scholar] [CrossRef]
- Zhan, Q.; Wang, Q.; Lin, R.; He, P.; Lai, F.; Zhang, M.; Wu, H. Structural characterization and immunomodulatory activity of a novel acid polysaccharide isolated from the pulp of Rosa laevigata Michx fruit. Int. J. Biol. Macromol. 2020, 145, 1080–1090. [Google Scholar] [CrossRef]
- Chen, G.; Kan, J. Ultrasound-assisted extraction, characterization, and antioxidant activity in vitro and in vivo of polysaccharides from Chestnut rose (Rosa roxburghii tratt) fruit. J. Food Sci. Technol. 2018, 55, 1083–1092. [Google Scholar] [CrossRef]
- Wu, M.; Feng, H.; Song, J.; Chen, L.; Xu, Z.; Xia, W.; Zhang, W. Structural elucidation and immunomodulatory activity of a neutral polysaccharide from the Kushui Rose (Rosa setate × Rosa rugosa) waste. Carbohydr. Polym. 2020, 232, 115804. [Google Scholar] [CrossRef]
- Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol. 2016, 92, 37–48. [Google Scholar] [CrossRef]
- Gao, Z.P.; Yu, Q.B.; Zhao, T.T.; Ma, Q.; Chen, G.X.; Yang, Z.N. A Functional Component of the Transcriptionally Active Chromosome Complex, Arabidopsis pTAC14, Interacts with pTAC12/HEMERA and Regulates Plastid Gene Expression. Plant Physiol. 2011, 157, 1733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, P.; Li, C.; Xu, F.; Chen, J. A polysaccharide from Rosa roxburghii Tratt fruit attenuates high-fat diet-induced intestinal barrier dysfunction and inflammation in mice by modulating the gut microbiota. Food Funct. 2022, 13, 530–547. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.B.; He, J.S.; Niu, S.M.; Pi, Z.F.; Shao, W.; Liu, F.; Zhao, L. A gallic acid derivative and polysaccharides with antioxidative activity from rose (Rosa rugosa) flowers. J. Pharm. Pharmacol. 2004, 56, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Y.; Ren, Z.; Cong, Z.; Chen, M.; Shi, L.; Han, X.; Pei, J. Optimization of the microwave-assisted enzymatic extraction of Rosa roxburghii Tratt. polysaccharides using response surface methodology and its antioxidant and α-d-glucosidase inhibitory activity. Int. J. Biol. Macromol. 2018, 112, 473–482. [Google Scholar] [CrossRef]
Result | |
---|---|
Yield (g/100 g d.w.) | 0.80 ± 0.02 |
Water soluble sugars (g/100 g d.w.) | 0.23 ± 0.00 |
Total glucans (g/100 g d.w.) | 16.65 ± 0.39 |
α-Glucans (g/100 g d.w.) | 3.70 ± 0.09 |
β-Glucans (g/100 g d.w.) | 12.95 ± 0.30 |
Sugar content (% of CPL-Rx) | 28.94 ± 0.01 |
Uronic acids (% of CPL-Rx) | 2.61 ± 0.41 |
Phenolic content (% of CPL-Rx) | 4.55 ± 0.12 |
Protein content (% of CPL-Rx) | 0.88 ± 0.03 |
Unknown I | Unknown II | Unknown III | Galactose | Glucose | Fructose | Arabinose |
---|---|---|---|---|---|---|
1.34 | 2.65 | 4.29 | 11.77 | 64.31 | 11.36 | 4.27 |
Sample | Concentration (mg/mL) | COX-1 Inhibition (%) | COX-2 Inhibition (%) | HYAL Inhibition (IC50; µg/mL) |
---|---|---|---|---|
CPL-Rx | 0.25 | n.a. | n.a. | 335.23 ± 4.16 |
CPL-Rx | 0.5 | n.a. | n.a. | |
CPL-Rx | 0.75 | 4.67 ± 0.26 | 6.96 ± 0.36 | |
CPL-Rx | 1 | 10.64 ± 0.59 | 8.19 ± 0.39 | |
CPL-Rx | 2 | 18.91 ± 0.83 | 45.64 ± 1.95 | |
CPL-Rx | 5 | 23.26 ± 0.88 | 71.98 ± 1.82 | |
ASA | 1 mM | 65.26 ± 1.84 | 75.03 ± 4.07 | - |
EGCG | - | - | - | 280.50 ± 3.52 |
TEAC | DPPH Scavenging Activity | ORAC | ||
---|---|---|---|---|
(mmol/g DE) | EC50 (mg DE/mg DPPH•) | TE (mmol/g DE) | AsAE (mmol/g DE) | TE (mmol/g DE) |
0.302 ± 0.01 | 3.92 ± 0.12 | 0.092 ± 0.01 | 0.159 ± 0.08 | 0.134 ± 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łubek-Nguyen, A.; Olech, M.; Nowacka-Jechalke, N.; Martyna, A.; Kubiński, K.; Masłyk, M.; Moczulski, M.; Kanak, S. Crude Polysaccharide Fraction from Rosa rugosa Thunb. Root—Chemical Characterisation, Enzyme Inhibitory, Antioxidant and Antiproliferative Activity. Appl. Sci. 2022, 12, 10126. https://doi.org/10.3390/app121910126
Łubek-Nguyen A, Olech M, Nowacka-Jechalke N, Martyna A, Kubiński K, Masłyk M, Moczulski M, Kanak S. Crude Polysaccharide Fraction from Rosa rugosa Thunb. Root—Chemical Characterisation, Enzyme Inhibitory, Antioxidant and Antiproliferative Activity. Applied Sciences. 2022; 12(19):10126. https://doi.org/10.3390/app121910126
Chicago/Turabian StyleŁubek-Nguyen, Agnieszka, Marta Olech, Natalia Nowacka-Jechalke, Aleksandra Martyna, Konrad Kubiński, Maciej Masłyk, Marcin Moczulski, and Sebastian Kanak. 2022. "Crude Polysaccharide Fraction from Rosa rugosa Thunb. Root—Chemical Characterisation, Enzyme Inhibitory, Antioxidant and Antiproliferative Activity" Applied Sciences 12, no. 19: 10126. https://doi.org/10.3390/app121910126
APA StyleŁubek-Nguyen, A., Olech, M., Nowacka-Jechalke, N., Martyna, A., Kubiński, K., Masłyk, M., Moczulski, M., & Kanak, S. (2022). Crude Polysaccharide Fraction from Rosa rugosa Thunb. Root—Chemical Characterisation, Enzyme Inhibitory, Antioxidant and Antiproliferative Activity. Applied Sciences, 12(19), 10126. https://doi.org/10.3390/app121910126