Experimental Study on Failure Mechanism and Mode of Fly-Ash Dam Slope Triggered by Rainfall Infiltration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials in the Test
2.2. Laboratory Test Facility
2.3. Test Design
3. Results and Discussion
3.1. Results of the Test under S1 and S2 Conditions
3.1.1. Tests on Formation of the Initial Seepage Field in the Dam Slopes of S1 and S2
3.1.2. Rainfall Test of S1
3.1.3. Rainfall Test of S2
3.2. Results of Test under S3 and S4 Conditions
3.2.1. Rainfall Test of S3
3.2.2. Rainfall Test of S4
3.3. Analysis and Discussion on Failure Characteristics of Fly Ash Dam Slope under Rainfall
3.3.1. Failure Mechanism and Failure Mode Analysis of Fly Ash Dam-Slope under Rainfall
3.3.2. Influencing Factors of the Failure Characteristics of Fly-Ash Dam Slopes under Rainfall
4. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Santamarina, J.C.; Torres-Cruz, L.A.; Bachus, R.C. Why coal ash and tailings dam disasters occur. Science 2009, 364, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Radtke Russell, P. Fly-ash spill raises questions on storage. Eng. News Rec. 2009, 2019, 12–13. [Google Scholar]
- Rico, M.; Benito, G.; Salgueiro, A.; Díez-Herrero, A.; Pereira, H. Reported tailings dam failures: A review of the European incidents in the worldwide context. J. Hazard. Mater. 2008, 152, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef]
- Agurto-Detzel, H.; Bianchi, M.; Assumpção, M.; Schimmel, M.; Collaço, B.; Ciardelli, C.; Barbosa, J.R.; Calhau, J. The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence. Geophys. Res. Lett. 2016, 43, 4929–4936. [Google Scholar] [CrossRef]
- Lyu, Z.; Chai, J.; Xu, Z.; Qin, Y.; Cao, J. A Comprehensive Review on Reasons for Tailings Dam Failures Based on Case History. Adv. Civ. Eng. 2019, 2019, 4159306. [Google Scholar] [CrossRef]
- Laureano, F.V.; Kwitko-Ribeiro, R.; Guimarães, L.; Leão, L.P. Mineralogical Fingerprint of Iron Ore Tailings in Paraopeba River Bedload Sediments after the B1 Dam Failure in Brumadinho, MG (Brazil). Minerals 2022, 12, 716. [Google Scholar] [CrossRef]
- Quaresma, V.S.; Aguiar, V.M.C.; Bastos, A.C.; Oliveira, K.S.; Vieira, F.V.; Sá, F.; Baptista Neto, J.A. The impact of trace metals in marine sediments after a tailing dam failure: The Fundão dam case (Brazil). Environ. Earth Sci. 2021, 80, 1–16. [Google Scholar] [CrossRef]
- do Carmo, F.F.; Kamino, L.H.Y.; Junior, R.T.; de Campos, I.C.; do Carmo, F.F.D.; Silvino, G.; da Silva Xavier de Castro, K.J.; Mauro, M.L.; Rodrigues, N.U.A.; de Souza Miranda, M.P.; et al. Fundão tailings dam failures: The environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspect. Ecol. Conserv. 2017, 15, 145–151. [Google Scholar] [CrossRef]
- Hatje, V.; Pedreira, R.M.; de Rezende, C.E.; Schettini, C.A.F.; de Souza, G.C.; Marin, D.C.; Hackspacher, P.C. The environmental impacts of one of the largest tailing dam failures worldwide. Sci. Rep. 2017, 7, 10706. [Google Scholar] [CrossRef]
- de Lima, R.E.; de Lima Picanço, J.; da Silva, A.F.; Acordes, F.A. An anthropogenic flow type gravitational mass movement: The Córrego do Feijão tailings dam disaster, Brumadinho, Brazil. Landslides 2020, 17, 2895–2906. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.-M.; Zhu, Q.; Horgan, F.G.; Zhang, Q. Risk assessment for tailings dams in Brumadinho of Brazil using InSAR time series approach. Sci. Total Environ. 2020, 717, 137125. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Murakami, S. Global-scale impact analysis of mine tailings dam failures: 1915–2020. Glob. Environ. Chang. 2021, 70, 102361. [Google Scholar] [CrossRef]
- Rana, N.M.; Ghahramani, N.; Evans, S.G.; McDougall, S.; Small, A.; Take, W.A. Catastrophic mass flows resulting from tailings impoundment failures. Eng. Geol. 2021, 292, 106262. [Google Scholar] [CrossRef]
- Martí, J.; Riera, F.; Martínez, F. Interpretation of the Failure of the Aznalcóllar (Spain) Tailings Dam. Mine Water Environ. 2021, 40, 189–208. [Google Scholar] [CrossRef]
- Alonso, E.E. The Failure of the Aznalcóllar Tailings Dam in SW Spain. Mine Water Environ. 2021, 40, 209–224. [Google Scholar] [CrossRef]
- Alonso, E.E.; Gens, A. Aznalcóllar dam failure. Part 1: Field observations and material properties. Géotechnique 2006, 56, 165–183. [Google Scholar] [CrossRef]
- Gens, A.; Alonso, E.E. Aznalcóllar dam failure. Part 2: Stability conditions and failure. Géotechnique 2006, 56, 185–201. [Google Scholar] [CrossRef]
- Alonso, E.E.; Gens, A. Aznalcóllar dam failure. Part 3: Dynamics of the motion. Géotechnique 2006, 56, 203–210. [Google Scholar] [CrossRef]
- Rodríguez, R.; Muñoz-Moreno, A.; Caparrós, A.V.; Garcia-Garcia, C.; Brime-Barrios, A.; Arranz-Gonzalez, J.C.; Rodriguez-Gomez, V.; Fernandez-Naranjo, F.J.; Alcolea, A. How to Prevent Flow Failures in Tailings Dams. Mine Water Environ. 2021, 40, 83–112. [Google Scholar] [CrossRef]
- Clarkson, L.; Williams, D. An Overview of Conventional Tailings Dam Geotechnical Failure Mechanisms. Min. Metall. Explor. 2021, 38, 1305–1328. [Google Scholar] [CrossRef]
- Van Niekerk, H.J.; Viljoen, M.J. Causes and conse quences of the Merriespruit and other tailings-dam failures. Land Degrad. Dev. 2005, 16, 201–212. [Google Scholar] [CrossRef]
- Fourie, A.B.; Blight, G.E.; Papageorgiou, G. Static liquefaction as a possible explanation for the Merriespruit tailings dam failure. Can. Geotech. J. 2001, 38, 707–719. [Google Scholar] [CrossRef]
- Chandler, R.J.; Tosatti, G. The Stava tailings dams failure, Italy, July 1985. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 33, 35. [Google Scholar] [CrossRef]
- Vick, S.G. Tailings dam failure at Omai in Guyana. Min. Eng. 1996, 48, 34–37. [Google Scholar]
- Villavicencio, G.; Espinace, R.; Palma, J.; Fourie, A.; Valenzuela, P. Failures of sand tailings dams in a highly seismic country. Can. Geotech. J. 2014, 51, 449–464. [Google Scholar] [CrossRef]
- Dobry, R.; Alvarez, L. Seismic failures of Chilean tailings dams. J. Soil Mech. Found. Div. 1967, 93, 237–260. [Google Scholar] [CrossRef]
- Harder, L.F.; Stewart, J.P. Failure of Tapo Canyon tailings dam. J. Perform. Constr. Facil. 1996, 10, 109–114. [Google Scholar] [CrossRef]
- Glotov, V.E.; Chlachula, J.; Glotova, L.P.; Little, E. Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East. Eng. Geol. 2018, 245, 236–247. [Google Scholar] [CrossRef]
- Ahmad, M.; Hu, J.-L.; Hadzima-Nyarko, M.; Ahmad, F.; Tang, X.-W.; Rahman, Z.U.; Nawaz, A.; Abrar, M. Rockburst Hazard Prediction in Underground Projects Using Two Intelligent Classification Techniques: A Comparative Study. Symmetry 2021, 13, 632. [Google Scholar] [CrossRef]
- Yang, X.-L.; Wei, J.-J. Analytical approach for stability of 3D two-stage slope in non-uniform and unsaturated soils. Eng. Geol. 2021, 292, 106243. [Google Scholar] [CrossRef]
- Ahmad, M.; Katman, H.Y.; Al-Mansob, R.A.; Ahmad, F.; Safdar, M.; Alguno, A.C. Prediction of Rockburst Intensity Grade in Deep Underground Excavation Using Adaptive Boosting Classifier. Complexity 2022, 2022, 6156210. [Google Scholar] [CrossRef]
- Yang, X.-L.; Wei, J.-J. Seismic stability for reinforced 3D slope in unsaturated soils with pseudo-dynamic approach. Comput. Geotech. 2021, 134, 104124. [Google Scholar]
- Yang, X.L.; Yin, J.H. Slope stability analysis with nonlinear failure criterion. J. Eng. Mech. 2004, 130, 267–273. [Google Scholar] [CrossRef]
- Zandarín, M.T.; Oldecop, L.A.; Rodríguez, R.; Zabala, F. The role of capillary water in the stability of tailing dams. Eng. Geol. 2009, 105, 108–118. [Google Scholar] [CrossRef]
- Yu, D.; Tang, L.; Ye, F.; Chen, C. A virtual geographic environment for dynamic simulation and analysis of tailings dam failure. Int. J. Digit. Earth 2021, 14, 1212. [Google Scholar] [CrossRef]
- Lazarim, T.P.; de Souza Júnior, T.F.; Teixeira, S.H.C.; Mohseni, A.P.V. A Method for Estimating the Area Covered by Tailings in a Dam Failure Scenario. Geotech. Geol. Eng. 2022, 40, 483–498. [Google Scholar] [CrossRef]
- Dedring, T.; Graw, V.; Thygesen, K.; Rienow, A. Validation of an Empirical Model with Risk Assessment Functionalities to Simulate and Evaluate the Tailings Dam Failure in Brumadinho. Sustainability 2022, 14, 6681. [Google Scholar] [CrossRef]
- Williams, D.J. Lessons from Tailings Dam Failures—Where to Go from Here? Minerals 2021, 11, 853. [Google Scholar] [CrossRef]
- Yin, G.; Li, G.; Wei, Z.; Wan, L.; Shui, G.; Jing, X. Stability analysis of a copper tailings dam via laboratory model tests: A Chinese case study. Miner. Eng. 2011, 24, 122–130. [Google Scholar] [CrossRef]
- Yao, C.; Wu, L.; Yang, J.; Xiao, L.; Liu, X.; Jiang, Q.; Zhou, C. Influences of Tailings Particle Size on Overtopping Tailings Dam Failures. Mine Water Environ. 2021, 40, 174–188. [Google Scholar] [CrossRef]
- Wu, S.; Cai, H.; Xiao, J.; Du, J.; Yan, J.; Liu, C.; Zheng, B. Experimental study on discharge impact characteristics induced by piping failure of tailings dam. Arab. J. Geosci. 2021, 14, 2054. [Google Scholar]
- Tian, S.; Dai, X.; Wang, G.; Lu, Y.; Chen, J. Formation and evolution characteristics of dam breach and tailings flow from dam failure: An experimental study. Nat. Hazards 2021, 107, 1621–1638. [Google Scholar] [CrossRef]
- Wu, T.; Qin, J. Experimental Study of a Tailings Impoundment Dam Failure Due to Overtopping. Mine Water Environ. 2018, 37, 272–280. [Google Scholar] [CrossRef]
- Zhang, L.-T.; Qi, Q.-L.; Li, Q.; Zhang, S.; Liu, Y.B. Experimental model study on dam break and evolution law of tailings pond. J. Hydraul. Eng. 2016, 47, 229–235. (In Chinese) [Google Scholar]
- Lin, S.-Q.; Wang, G.-J.; Liu, W.-L.; Zhao, B.; Shen, Y.-M.; Wang, M.-L.; Li, X.-S. Regional Distribution and Causes of Global Mine Tailings Dam Failures. Metals 2022, 12, 905. [Google Scholar] [CrossRef]
- Lv, C.; Bi, R.; Guo, X.; Chen, D.; Guo, Y.; Xu, Z. Erosion characteristics of different reclaimed substrates on iron tailings slopes under simulated rainfall. Sci. Rep. 2020, 10, 4275. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, X.; Xu, X. Experimental Study on Hydraulic Erosion Characteristics of Ecological Slope of Tailings Reservoir under Rainfall. KSCE J. Civ. Eng. 2021, 25, 2426–2436. [Google Scholar] [CrossRef]
- Guang-Jin, W.; Jing-Wen, K.; Chao, D.; Yong-Jun, T.; Xiang-Yun, K. Study on tailings dam over-topping failure model test and break mechanism under the rainfall condition. Tech. Gaz. 2017, 24, 1897–1904. [Google Scholar]
- Hu, W.; Xin, C.; Li, Y.; Zheng, Y.; van Asch, T.; McSaveney, M. Instrumented flume tests on the failure and fluidization of tailings dams induced by rainfall infiltration. Eng. Geol. 2021, 294, 106401. [Google Scholar] [CrossRef]
- Zuo, Z.-B.; Zhang, L.-L.; Wang, J.-H. Model tests on rainfall-induced colluvium landslides: Effects of particle-size distribution. Chin. J. Geotech. Eng. 2015, 37, 1319–1327. (In Chinese) [Google Scholar]
- Shen, S.; Sun, H.; Shang, Y.; Zhong, J.; Huang, J. Scouring-penetration coupling analysis of embankment slope under rainfall action. Chin. J. Rock Mech. Eng. 2011, 30, 2456–2462. (In Chinese) [Google Scholar]
- Wu, Q.; Wang, C.-M.; Song, P.R.; Zhu, H.-B.; Ma, D.-H. Rainfall erosion experiment for steep loess slope and fluid-soil coupling simulation with PFC3D. Rock Soil Mech. 2014, 35, 977–985. (In Chinese) [Google Scholar]
- Guo, Z.; Torra, O.; Hürlimann, M.; Abancó, C.; Medina, V. FSLAM: A QGIS plugin for fast regional susceptibility assessment of rainfall-induced landslides. Environ. Model. Softw. 2022, 150, 105354. [Google Scholar] [CrossRef]
Soil Type | Dry Density (g·cm−3) | Permeability Coefficient (m·s−1) | Cohesive Strength (kPa) | Angle of Internal Friction (°) |
---|---|---|---|---|
fly ash | 1.03 | 2.5 × 10−5 | 1.86 | 28 |
gravel | 2.2 | 1.00 × 10−3 | 0 | 35 |
Condition’s Name | Outer Slope Ratio of the Dam Slope | Total Height of Dam Slope (cm) | Initial Dam Height (cm) | Rainfall Intensity (mm·h−1) | Length of the Dry Beach (cm) | Test Conditions |
---|---|---|---|---|---|---|
S1 | 1:2 | 50 | 10 | 17 | 60 | First, a stable seepage field was formed in the fly-ash dam, and then rainfall began. |
S2 | 1:3 | 50 | 10 | 17 | 10 | First, a stable seepage field was formed in the fly-ash dam, and then rainfall began. |
S3 | 1:2 | 50 | 10 | 17 | / | Dry-stack, direct rainfall. |
S4 | 1:3 | 50 | 10 | 17 | / | Dry-stack, direct rainfall. |
No. | Failure Mode | Is There a Sliding Surface | Maximum Depth of the Failure Surface (cm) | Characteristics of Failure Surface |
---|---|---|---|---|
S1 | Retrogressive landslide caused by multi-stage local-sliding | Yes | 10 | Shallow |
S2 | Progressive erosion failure mode by runoff erosion and flow-slide damage | NO | - | - |
S3 | Overall-sliding failure | Yes(arc) | 18 | Deep |
S4 | Progressive erosion failure mode mainly by runoff erosion | NO | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, H.-K.; Li, Q.; Zhang, L.-T.; Li, X.; Wang, J.-T. Experimental Study on Failure Mechanism and Mode of Fly-Ash Dam Slope Triggered by Rainfall Infiltration. Appl. Sci. 2022, 12, 9404. https://doi.org/10.3390/app12199404
Niu H-K, Li Q, Zhang L-T, Li X, Wang J-T. Experimental Study on Failure Mechanism and Mode of Fly-Ash Dam Slope Triggered by Rainfall Infiltration. Applied Sciences. 2022; 12(19):9404. https://doi.org/10.3390/app12199404
Chicago/Turabian StyleNiu, Hong-Kai, Qiang Li, Li-Ting Zhang, Xin Li, and Jun-Tao Wang. 2022. "Experimental Study on Failure Mechanism and Mode of Fly-Ash Dam Slope Triggered by Rainfall Infiltration" Applied Sciences 12, no. 19: 9404. https://doi.org/10.3390/app12199404
APA StyleNiu, H. -K., Li, Q., Zhang, L. -T., Li, X., & Wang, J. -T. (2022). Experimental Study on Failure Mechanism and Mode of Fly-Ash Dam Slope Triggered by Rainfall Infiltration. Applied Sciences, 12(19), 9404. https://doi.org/10.3390/app12199404