Special Issue on Image Processing Techniques for Biomedical Applications
Funding
Acknowledgments
Conflicts of Interest
References
- Ho, T.K.K.; Gwak, J. Multiple Feature Integration for Classification of Thoracic Disease in Chest Radiography. Appl. Sci. 2019, 9, 4130. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Domínguez, I.; Fernández-Seara, M.A.; Pérez-Fernández, N.; Burguete, J. Systematic Method for Morphological Reconstruction of the Semicircular Canals Using a Fully Automatic Skeletonization Process. Appl. Sci. 2019, 9, 4904. [Google Scholar] [CrossRef] [Green Version]
- Lo, C.M.; Chen, Y.C.; Weng, R.C.; Hsieh, K.L.C. Intelligent Glioma Grading Based on Deep Transfer Learning of MRI Radiomic Features. Appl. Sci. 2019, 9, 4926. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Yan, W.; Huang, Y.; Guo, Y.; Zhou, G.; Wang, Y. IVUS Image Segmentation Using Superpixel-Wise Fuzzy Clustering and Level Set Evolution. Appl. Sci. 2019, 9, 4967. [Google Scholar] [CrossRef] [Green Version]
- Ooka, M.; Tokuoka, Y.; Nishimoto, S.; Hiroi, N.F.; Yamada, T.G.; Funahashi, A. Deep Learning for Non-Invasive Determination of the Differentiation Status of Human Neuronal Cells by Using Phase-Contrast Photomicrographs. Appl. Sci. 2019, 9, 5503. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, Y.; Yu, J. Optimized Resolution-Oriented Many-to-One Intensity Standardization Method for Magnetic Resonance Images. Appl. Sci. 2019, 9, 5531. [Google Scholar] [CrossRef] [Green Version]
- Lo, C.M.; Chen, C.C.; Yeh, Y.H.; Chang, C.C.; Yeh, H.J. Quantitative Analysis of Melanosis Coli Colonic Mucosa Using Textural Patterns. Appl. Sci. 2020, 10, 404. [Google Scholar] [CrossRef] [Green Version]
- Arjmand, A.; Tsipouras, M.G.; Tzallas, A.T.; Forlano, R.; Manousou, P.; Giannakeas, N. Quantification of Liver Fibrosis—A Comparative Study. Appl. Sci. 2020, 10, 447. [Google Scholar] [CrossRef] [Green Version]
- Iesmantas, T.; Paulauskaite-Taraseviciene, A.; Sutiene, K. Enhancing Multi-tissue and Multi-scale Cell Nuclei Segmentation with Deep Metric Learning. Appl. Sci. 2020, 10, 615. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Reyes, L.M.; Rodríguez-Reséndiz, J.; Salazar-Colores, S.; Avecilla-Ramírez, G.N.; Pérez-Soto, G.I. A High-Accuracy Mathematical Morphology and Multilayer Perceptron-Based Approach for Melanoma Detection. Appl. Sci. 2020, 10, 1098. [Google Scholar] [CrossRef]
- Di Ruberto, C.; Loddo, A.; Puglisi, G. Blob Detection and Deep Learning for Leukemic Blood Image Analysis. Appl. Sci. 2020, 10, 1176. [Google Scholar] [CrossRef]
- Benjdira, B.; Ouni, K.; Al Rahhal, M.M.; Albakr, A.; Al-Habib, A.; Mahrous, E. Spinal Cord Segmentation in Ultrasound Medical Imagery. Appl. Sci. 2020, 10, 1370. [Google Scholar] [CrossRef] [Green Version]
- Inoue, M.; Freel, T.; Van Avermaete, A.; Leevy, W.M. Color Enhancement Strategies for 3D Printing of X-ray Computed Tomography Bone Data for Advanced Anatomy Teaching Models. Appl. Sci. 2020, 10, 1571. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Xia, Y.; Wang, F.; Zhang, D.; Li, X.; He, F. Transfer Learning Algorithm of P300-EEG Signal Based on XDAWN Spatial Filter and Riemannian Geometry Classifier. Appl. Sci. 2020, 10, 1804. [Google Scholar] [CrossRef] [Green Version]
- Ullah, R.; Arslan, T. PySpark-Based Optimization of Microwave Image Reconstruction Algorithm for Head Imaging Big Data on High-Performance Computing and Google Cloud Platform. Appl. Sci. 2020, 10, 3382. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, F.; Gao, J.; Cao, S. Multi-Path Recurrent U-Net Segmentation of Retinal Fundus Image. Appl. Sci. 2020, 10, 3777. [Google Scholar] [CrossRef]
- Alkhaleefah, M.; Ma, S.C.; Chang, Y.L.; Huang, B.; Chittem, P.K.; Achhannagari, V.P. Double-Shot Transfer Learning for Breast Cancer Classification from X-Ray Images. Appl. Sci. 2020, 10, 3999. [Google Scholar] [CrossRef]
- Kim, H.E.; Kang, S.H.; Kim, K.; Lee, Y. Total Variation-Based Noise Reduction Image Processing Algorithm for Confocal Laser Scanning Microscopy Applied to Activity Assessment of Early Carious Lesions. Appl. Sci. 2020, 10, 4090. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Zhou, Z.; Yu, Y.; Liang, X. Decoding Visual Motions from EEG Using Attention-Based RNN. Appl. Sci. 2020, 10, 5662. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, X.; Li, Y. Automatic Segmentation of Macular Edema in Retinal OCT Images Using Improved U-Net++. Appl. Sci. 2020, 10, 5701. [Google Scholar] [CrossRef]
- Binol, H.; Moberly, A.C.; Niazi, M.K.K.; Essig, G.; Shah, J.; Elmaraghy, C.; Teknos, T.; Taj-Schaal, N.; Yu, L.; Gurcan, M.N. SelectStitch: Automated Frame Segmentation and Stitching to Create Composite Images from Otoscope Video Clips. Appl. Sci. 2020, 10, 5894. [Google Scholar] [CrossRef]
- Serrancolí, G.; Bogatikov, P.; Tanyà Palacios, G.; Torner, J.; Monllau, J.C.; Perelli, S. An Open-Source Android Application to Measure Anterior–Posterior Knee Translation. Appl. Sci. 2020, 10, 5896. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, M.; Pang, Y. CDA-Net for Automatic Prostate Segmentation in MR Images. Appl. Sci. 2020, 10, 6678. [Google Scholar] [CrossRef]
- Kim, B.G.; Kang, S.H.; Park, C.R.; Jeong, H.W.; Lee, Y. Noise Level and Similarity Analysis for Computed Tomographic Thoracic Image with Fast Non-Local Means Denoising Algorithm. Appl. Sci. 2020, 10, 7455. [Google Scholar] [CrossRef]
- Fontana, L.; Mastropietro, A.; Scalco, E.; Peruzzo, D.; Beretta, E.; Strazzer, S.; Arrigoni, F.; Rizzo, G. Multi-Steps Registration Protocol for Multimodal MR Images of Hip Skeletal Muscles in a Longitudinal Study. Appl. Sci. 2020, 10, 7823. [Google Scholar] [CrossRef]
- Putzu, L.; Fumera, G. An Empirical Evaluation of Nuclei Segmentation from H&E Images in a Real Application Scenario. Appl. Sci. 2020, 10, 7982. [Google Scholar] [CrossRef]
- Chiu, C.H.; Leu, J.D.; Lin, T.T.; Su, P.H.; Li, W.C.; Lee, Y.J.; Cheng, D.C. Systematic Quantification of Cell Confluence in Human Normal Oral Fibroblasts. Appl. Sci. 2020, 10, 9146. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Ruberto, C.; Loddo, A.; Putzu, L. Special Issue on Image Processing Techniques for Biomedical Applications. Appl. Sci. 2022, 12, 10338. https://doi.org/10.3390/app122010338
Di Ruberto C, Loddo A, Putzu L. Special Issue on Image Processing Techniques for Biomedical Applications. Applied Sciences. 2022; 12(20):10338. https://doi.org/10.3390/app122010338
Chicago/Turabian StyleDi Ruberto, Cecilia, Andrea Loddo, and Lorenzo Putzu. 2022. "Special Issue on Image Processing Techniques for Biomedical Applications" Applied Sciences 12, no. 20: 10338. https://doi.org/10.3390/app122010338
APA StyleDi Ruberto, C., Loddo, A., & Putzu, L. (2022). Special Issue on Image Processing Techniques for Biomedical Applications. Applied Sciences, 12(20), 10338. https://doi.org/10.3390/app122010338