Conceptual Design of a Compact Divertor Heat Load Simulation Device: HIT-PSI
Abstract
:1. Introduction
2. Designs of the Device and Its Sub-Systems
2.1. Scientific Objectives
- To investigate strongly coupled PSI regimes under high fluxes close to extreme first-wall plasma conditions similar to that of ITER-like reactors;
- To examine the effects of chemistry and atomic physics in such boundary plasmas with high densities and low temperatures;
- To explore low-temperature plasma diagnostic technologies under the D-SOL plasma and magnetic field conditions;
- To develop high-parameter plasma source technologies in a strong magnetic field environment.
2.2. Plasma Source
2.3. Superconducting Magnets
- Safety, which always comes first, including personnel and operational safety needs;
- An axial magnetic field of >2.0 T with great homogeneity;
- More than 1000 mm axial distance of beam transmission, for future experimental research with a radial size as large as possible, enough for the vacuum chamber to accommodate the beam;
- Radial windows left for pumping and diagnostic needs;
- A fast excitation for experimental flexibility;
- Also, a low cost for operation, maintenance, and construction.
2.4. Vacuum Subsystem
2.5. Target Holder Subsystem
- To be combined with the target probe design for measurements of the heat load flux;
- To complete tests for different sizes and shapes of materials;
- To apply proper voltage to the sample for various incident ion energy regulations;
- To realize plasma-material interaction experiments with different beam incident angles;
- To achieve effective heat dissipation for long-duration experimental tests;
3. Numerical Simulation Device Capability with SOLPS
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- McCracken, G.M.; Stott, P.E. Plasma-Surface Interactions in Tokamaks. Nucl. Fusion 1979, 19, 889–981. [Google Scholar] [CrossRef]
- Linke, J.; Du, J.; Loewenhoff, T.; Pintsuk, G.; Spilker, B.; Steudel, I.; Wirtz, M. Challenges for Plasma-Facing Components in Nuclear Fusion. Matter Radiat. Extrem. 2019, 4, 056201. [Google Scholar] [CrossRef] [Green Version]
- Lipschultz, B.; Bonnin, X.; Counsell, G.; Kallenbach, A.; Kukushkin, A.; Krieger, K.; Leonard, A.; Loarte, A.; Neu, R.; Pitts, R.A.; et al. Plasma–Surface Interaction, Scrape-off Layer and Divertor Physics: Implications for ITER. Nucl. Fusion 2007, 47, 1189–1205. [Google Scholar] [CrossRef]
- Barabash, V.; Peacock, A.; Fabritsiev, S.; Kalinin, G.; Zinkle, S.; Rowcliffe, A.; Rensman, J.-W.; Tavassoli, A.A.; Marmy, P.; Karditsas, P.J.; et al. Materials Challenges for ITER—Current Status and Future Activities. J. Nucl. Mater. 2007, 367–370, 21–32. [Google Scholar] [CrossRef]
- Hirai, T.; Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; et al. ITER Tungsten Divertor Design Development and Qualification Program. Fusion Eng. Des. 2013, 88, 1798–1801. [Google Scholar] [CrossRef]
- Wan, Y.; Li, J.; Liu, Y.; Wang, X.; Chan, V.; Chen, C.; Duan, X.; Fu, P.; Gao, X.; Feng, K.; et al. Overview of the Present Progress and Activities on the CFETR. Nucl. Fusion 2017, 57, 102009. [Google Scholar] [CrossRef]
- Doerner, R.P.; Baldwin, M.J.; Nishijima, D. Plasma-Induced Morphology of Beryllium Targets Exposed in PISCES-B. J. Nucl. Mater. 2014, 455, 1–4. [Google Scholar] [CrossRef]
- Roth, J.; Doerner, R.; Baldwin, M.; Dittmar, T.; Xu, H.; Sugiyama, K.; Reinelt, M.; Linsmeier, C.; Oberkofler, M. Oxidation of Beryllium and Exposure of Beryllium Oxide to Deuterium Plasmas in PISCES B. J. Nucl. Mater. 2013, 438, S1044–S1047. [Google Scholar] [CrossRef] [Green Version]
- Ohno, N.; Nishijima, D.; Takamura, S.; Uesugi, Y.; Motoyama, M.; Hattori, N.; Arakawa, H.; Ezumi, N.; Krasheninnikov, S.; Pigarov, A.; et al. Static and Dynamic Behaviour of Plasma Detachment in the Divertor Simulator Experiment NAGDIS-II. Nucl. Fusion 2001, 41, 1055. [Google Scholar] [CrossRef]
- de Castro, A.; Moynihan, C.; Stemmley, S.; Szott, M.; Ruzic, D.N. Lithium, a Path to Make Fusion Energy Affordable. Phys. Plasmas 2021, 28, 050901. [Google Scholar] [CrossRef]
- Ye, Z.-B.; Ma, X.-C.; He, P.-N.; Wang, Z.-J.; Yang, C.; Chen, B.; Chen, J.-J.; Wei, J.-J.; Zhang, K.; Gou, F.-J. Compatibility Investigation of Liquid Tin and Tungsten-Based Capillary Porous System under High-Density Plasma Environment. Tungsten 2020, 2, 94–100. [Google Scholar] [CrossRef]
- Shumack, A.E.; Veremiyenko, V.P.; Schram, D.C.; de Blank, H.J.; Goedheer, W.J.; van der Meiden, H.J.; Vijvers, W.A.J.; Westerhout, J.; Lopes Cardozo, N.J.; van Rooij, G.J. Rotation of a Strongly Magnetized Hydrogen Plasma Column Determined from an Asymmetric Balmer- β Spectral Line with Two Radiating Distributions. Phys. Rev. E 2008, 78, 046405. [Google Scholar] [CrossRef] [Green Version]
- Biewer, T.M.; Bigelow, T.S.; Caneses, J.F.; Diem, S.J.; Green, D.L.; Kafle, N.; Rapp, J. Proto-MPEX Team Observations of Electron Heating during 28 GHz Microwave Power Application in Proto-MPEX. Phys. Plasmas 2018, 25, 024501. [Google Scholar] [CrossRef]
- Kajita, S.; Tsujihara, T.; Aramaki, M.; van der Meiden, H.; Oshima, H.; Ohno, N.; Tanaka, H.; Yasuhara, R.; Akiyama, T.; Fujii, K.; et al. Behavior of 2 3 S Metastable State He Atoms in Low-Temperature Recombining Plasmas. Phys. Plasmas 2017, 24, 073301. [Google Scholar] [CrossRef] [Green Version]
- van Eden, G.G.; Reinke, M.L.; Brons, S.; van der Bijl, G.; Krijger, B.; Lavrijsen, R.; Huber, S.P.; Perillo, R.; van de Sanden, M.C.M.; Morgan, T.W. Plasma Radiation Studies in Magnum-PSI Using Resistive Bolometry. Nucl. Fusion 2018, 58, 106006. [Google Scholar] [CrossRef] [Green Version]
- van Harskamp, W.E.N.; Brouwer, C.M.; Schram, D.C.; van de Sanden, M.C.M.; Engeln, R. Population Inversion in a Magnetized Hydrogen Plasma Expansion as a Consequence of the Molecular Mutual Neutralization Process. Phys. Rev. E 2011, 83, 036412. [Google Scholar] [CrossRef] [Green Version]
- Takano, H.; Ohshima, H.; Kajita, S.; Tanaka, H.; Ohno, N. Development of Thomson Scattering Measurement System for Upstream Plasmas in the NAGDIS-II Device. Plasma Fusion Res. 2019, 14, 2405031. [Google Scholar] [CrossRef] [Green Version]
- Rapp, J.; Koppers, W.R.; van Eck, H.J.N.; van Rooij, G.J.; Goedheer, W.J.; de Groot, B.; Al, R.; Graswinckel, M.F.; van den Berg, M.A.; Kruyt, O.; et al. Construction of the Plasma-Wall Experiment Magnum-PSI. Fusion Eng. Des. 2010, 85, 1455–1459. [Google Scholar] [CrossRef]
- van de Pol, M.J.; Alonso van der Westen, S.; Aussems, D.U.B.; van den Berg, M.A.; Brons, S.; van Eck, H.J.N.; van Eden, G.G.; Genuit, H.J.W.; van der Meiden, H.J.; Morgan, T.W.; et al. Operational Characteristics of the Superconducting High Flux Plasma Generator Magnum-PSI. Fusion Eng. Des. 2018, 136, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, H.J.N.; Akkermans, G.R.A.; Alonso van der Westen, S.; Aussems, D.U.B.; van Berkel, M.; Brons, S.; Classen, I.G.J.; van der Meiden, H.J.; Morgan, T.W.; van de Pol, M.J.; et al. High-Fluence and High-Flux Performance Characteristics of the Superconducting Magnum-PSI Linear Plasma Facility. Fusion Eng. Des. 2019, 142, 26–32. [Google Scholar] [CrossRef]
- Rapp, J.; Lumsdaine, A.; Beers, C.J.; Biewer, T.M.; Bigelow, T.S.; Caneses, J.F.; Caughman, J.B.O.; Goulding, R.H.; Kafle, N.; Lau, C.H.; et al. Latest Results from Proto-MPEX and the Future Plans for MPEX. Fusion Sci. Technol. 2019, 75, 654–663. [Google Scholar] [CrossRef]
- Zhuang, G.; Li, G.Q.; Li, J.; Wan, Y.X.; Liu, Y.; Wang, X.L.; Song, Y.T.; Chan, V.; Yang, Q.W.; Wan, B.N.; et al. Progress of the CFETR Design. Nucl. Fusion 2019, 59, 112010. [Google Scholar] [CrossRef]
- Lu, G.-H.; Cheng, L.; Arshad, K.; Yuan, Y.; Wang, J.; Qin, S.; Zhang, Y.; Zhu, K.; Luo, G.-N.; Zhou, H.; et al. Development and Optimization of STEP—A Linear Plasma Device for Plasma-Material Interaction Studies. Fusion Sci. Technol. 2017, 71, 177–186. [Google Scholar] [CrossRef]
- Ikeda, K. Progress in the ITER Physics Basis. Nucl. Fusion 2007, 47, E01. [Google Scholar] [CrossRef]
- Pitts, R.A.; Carpentier, S.; Escourbiac, F.; Hirai, T.; Komarov, V.; Kukushkin, A.S.; Lisgo, S.; Loarte, A.; Merola, M.; Mitteau, R.; et al. Physics Basis and Design of the ITER Plasma-Facing Components. J. Nucl. Mater. 2011, 415, S957–S964. [Google Scholar] [CrossRef]
- Vijvers, W.A.J.; de Groot, B.; Al, R.S.; van den Berg, M.A.; van Eck, H.J.N.; Goedheer, W.J.; Kleyn, A.W.; Koppers, W.R.; Kruijt, O.G.; Lopes Cardozo, N.J.; et al. Multiple Discharge Channels in a Cascaded Arc to Produce Large Diameter Plasma Beams. Fusion Eng. Des. 2009, 84, 1933–1936. [Google Scholar] [CrossRef]
- Xu, G.-Y. Studies of the Characteristics on Cascade Arc Plasma Sources. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2020. [Google Scholar] [CrossRef]
- De Temmerman, G.; van den Berg, M.A.; Scholten, J.; Lof, A.; van der Meiden, H.J.; van Eck, H.J.N.; Morgan, T.W.; de Kruijf, T.M.; Zeijlmans van Emmichoven, P.A.; Zielinski, J.J. High Heat Flux Capabilities of the Magnum-PSI Linear Plasma Device. Fusion Eng. Des. 2013, 88, 483–487. [Google Scholar] [CrossRef] [Green Version]
- International Commission on Non-Ionizing Radiation Protection. Guidelines on Limits of Exposure to Static Magnetic Fields. Health Phys. 2009, 96, 504–514. [Google Scholar] [CrossRef]
- Schneider, R.; Bonnin, X.; Borrass, K.; Coster, D.P.; Kastelewicz, H.; Reiter, D.; Rozhansky, V.A.; Braams, B.J. Plasma Edge Physics with B2-Eirene. Contrib. Plasma Phys. 2006, 46, 3–191. [Google Scholar] [CrossRef]
- Baeva, M.; Goedheer, W.J.; Lopes Cardozo, N.J.; Reiter, D. B2-EIRENE Simulation of Plasma and Neutrals in MAGNUM-PSI. J. Nucl. Mater. 2007, 363–365, 330–334. [Google Scholar] [CrossRef]
- Rapp, J.; Owen, L.W.; Bonnin, X.; Caneses, J.F.; Canik, J.M.; Corr, C.; Lore, J.D. Transport Simulations of Linear Plasma Generators with the B2.5-Eirene and EMC3-Eirene Codes. J. Nucl. Mater. 2015, 463, 510–514. [Google Scholar] [CrossRef]
- Owen, L.W.; Caneses, J.F.; Canik, J.; Lore, J.D.; Corr, C.; Blackwell, B.; Bonnin, X.; Rapp, J. B2.5-Eirene Modeling of Radial Transport in the MAGPIE Linear Plasma Device. Plasma Sources Sci. Technol. 2017, 26, 055005. [Google Scholar] [CrossRef]
- Sala, M.; Tonello, E.; Uccello, A.; Bonnin, X.; Ricci, D.; Dellasega, D.; Granucci, G.; Passoni, M. Simulations of Argon Plasmas in the Linear Plasma Device GyM with the SOLPS-ITER Code. Plasma Phys. Control. Fusion 2020, 62, 055005. [Google Scholar] [CrossRef]
Facility | Source | Te (eV) | Ne (m−3) | Particle Flux (m−2s−1) | B (T) | Heat Flux (MW/m2) | Ref. |
---|---|---|---|---|---|---|---|
PISCES-B | RF | ~20 | 1019 | 1022–1023 | 0.2 | - | [7,8] |
NAGDIS-II | RF | ~20 | 1019 | 1022–1023 | 0.4 | - | [9] |
STEP | LaB6 | ~20 | 1019 | 1022–1023 | 0.4 | - | [23] |
Magnum -PSI | Cascaded arc | <10 | ≥1021 | >1024 | 2.5 | >10 | [20] |
MPEX | RF | ~40 | 1019 | 1022–1023 | 5.0 | >10 | [21] |
HIT-PSI (designed) | Cascaded arc | <5 | ≥1021 | >1024 | 2.0 | >10 | |
ITER Divertor | - | 1–10 | 1021 | >1024 | 5.0 | >10 | [24] |
Parameter | Value |
---|---|
Number of coils | 5 |
Outer diameter | 956 mm |
Inner diameter | 450 mm |
Axial length | 1804.4 mm |
Maximum operating current | 275 A |
Mean strength of the axial magnetic field | >2.0 T |
Magnetic inductance | 35.66 H |
Total stored energy | 1.348 MJ |
Parameter | Coils-1/5 | Coil-3 | Coils-2/4 |
---|---|---|---|
Rin (mm) | 274.3 | 274.3 | 274.3 |
Rout (mm) | 315.5 | 286.7 | 297.0 |
Z (cm) | 150 | 463.2 | 100 |
Turns | 3600 | 3312 | 1320 |
Layers | 40 | 12 | 22 |
Bmax (T) | 5.02 | 2.47 | 3.25 |
Critical current (A) | 651.5 | >900 | >900 |
Coil 1 | Coil 2 | Coil 3 | Coil 4 | Coil 5 | |
---|---|---|---|---|---|
Coil 1 | 9.56 | ||||
Coil 2 | 0.44 | 1.47 | |||
Coil 3 | 0.37 | 0.76 | 4.61 | ||
Coil 4 | 0.05 | 0.06 | 0.76 | 1.47 | |
Coil 5 | 0.06 | 0.05 | 0.37 | 0.44 | 9.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Nie, Q.; Wang, M.; Xu, F.; Wang, X. Conceptual Design of a Compact Divertor Heat Load Simulation Device: HIT-PSI. Appl. Sci. 2022, 12, 10501. https://doi.org/10.3390/app122010501
Huang T, Nie Q, Wang M, Xu F, Wang X. Conceptual Design of a Compact Divertor Heat Load Simulation Device: HIT-PSI. Applied Sciences. 2022; 12(20):10501. https://doi.org/10.3390/app122010501
Chicago/Turabian StyleHuang, Tao, Qiuyue Nie, Min Wang, Fengyu Xu, and Xiaogang Wang. 2022. "Conceptual Design of a Compact Divertor Heat Load Simulation Device: HIT-PSI" Applied Sciences 12, no. 20: 10501. https://doi.org/10.3390/app122010501
APA StyleHuang, T., Nie, Q., Wang, M., Xu, F., & Wang, X. (2022). Conceptual Design of a Compact Divertor Heat Load Simulation Device: HIT-PSI. Applied Sciences, 12(20), 10501. https://doi.org/10.3390/app122010501