On the Relationship of the Acoustic Properties and the Microscale Geometry of Generic Porous Absorbers †
Abstract
:1. Introduction
1.1. Porous Materials; Applications and Engineering Models
1.2. Characterization and Design of Porous Materials
1.3. Applications of Machine-Learning Methods to Porous Materials
1.4. Scope, Contribution and Hypothesis of the Study
1.5. Outline of the Paper
2. Materials and Methods
2.1. Design of Generic Porous Media Samples
2.2. Inverse Parameter Identification of the Acoustic Model Parameters
2.3. Modeling the Relation of JCA Model Parameters and Microscale Geometry Using an Artificial Neural Network
2.4. Global Sensitivity Analysis
3. Results
3.1. First Order and Total Sensitivity Coefficients
3.2. Second-Order Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network. |
CT | Computer Tomography. |
GSA | Global Sensitivity Analysis. |
ILD | Infill Line Distance |
ILT | Infill Layer Thickness |
JCA | Johnson–Champoux–Allard. |
JCAL | Johnson–Champoux–Allard–Lafarge. |
JCPAL | Johnson–Champoux–Pride–Allard–Lafarge. |
LHS | Latin Hypercube Sampling. |
PDE | Partial Differential Equation. |
PINN | Physics INformed Neural Network. |
PU | Polyurethane |
ReLU | Rectified Linear Unit. |
REV | Representative Elementary Volume. |
References
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Lázaro, J.; Pereira, M.; Costa, P.A.; Godinho, L. Performance of Low-Height Railway Noise Barriers with Porous Materials. Appl. Sci. 2022, 12, 2960. [Google Scholar] [CrossRef]
- Pereira, M.; Carbajo, J.; Godinho, L.; Ramis, J.; Amado-Mendes, P. Improving the sound absorption behaviour of porous concrete using embedded resonant structures. J. Build. Eng. 2021, 35, 102015. [Google Scholar] [CrossRef]
- Piao, Z.; Heutschi, K.; Pieren, R.; Mikhailenko, P.; Poulikakos, L.D.; Hellweg, S. Environmental trade-offs for using low-noise pavements: Life cycle assessment with noise considerations. Sci. Total Environ. 2022, 842, 156846. [Google Scholar] [CrossRef]
- Beck, S.; Langer, S. Modeling of flow-induced sound in porous materials. Int. J. Numer. Methods Eng. 2014, 98, 44–58. [Google Scholar] [CrossRef]
- Beck, S.C.; Müller, L.; Langer, S.C. Numerical assessment of the vibration control effects of porous liners on an over-the-wing propeller configuration. Ceas Aeronaut. J. 2016, 7, 275–286. [Google Scholar] [CrossRef]
- Teruna, C.; Rego, L.; Avallone, F.; Ragni, D.; Casalino, D. Applications of the Multilayer Porous Medium Modeling Approach for Noise Mitigation. J. Aerosp. Eng. 2021, 34, 04021074. [Google Scholar] [CrossRef]
- Teruna, C.; Avallone, F.; Ragni, D.; Rubio-Carpio, A.; Casalino, D. Numerical analysis of a 3-D printed porous trailing edge for broadband noise reduction. J. Fluid Mech. 2021, 926, A17. [Google Scholar] [CrossRef]
- Rossignol, K.S.; Suryadi, A.; Herr, M.; Schmidt, J.; Tychsen, J. Experimental investigation of porous materials for trailing-edge noise reduction. Int. J. Aeroacoustics 2020, 19, 365–384. [Google Scholar] [CrossRef]
- Herr, M.; Rossignol, K.S.; Delfs, J.; Lippitz, N.; Mößner, M. Specification of porous materials for low-noise trailing-edge applications. In Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 16–20 June 2014; p. 3041. [Google Scholar]
- Magliacano, D.; Ouisse, M.; Khelif, A.; De Rosa, S.; Franco, F.; Atalla, N. Computation of wave dispersion characteristics in periodic porous materials modeled as equivalent fluids. In Proceedings of the ISMA 2018—International Conference on Noise and Vibration Engineering and USD 2018—International Conference on Uncertainty in Structural Dynamics, Leuven, Belgium, 17–19 September 2018; pp. 4741–4751. [Google Scholar]
- Magliacano, D.; Ouisse, M.; De Rosa, S.; Franco, F.; Khelif, A. Investigations about the modelling of acoustic properties of periodic porous materials with the shift cell approach. In Proceedings of the 9th ECCOMAS Thematic Conference on Smart Structures and Materials, SMART 2019, Paris, France, 8–11 July 2019; pp. 1112–1123. [Google Scholar]
- Yang, M.; Sheng, P. Sound Absorption Structures: From Porous Media to Acoustic Metamaterials. Annu. Rev. Mater. Res. 2017, 47, 83–114. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Yu, D.; Yang, H.; Zhong, J.; Wu, F.; Wen, J. A double porosity material for low frequency sound absorption. Compos. Struct. 2020, 239, 111978. [Google Scholar] [CrossRef]
- Ma, F.; Wang, C.; Du, Y.; Zhu, Z.; Wu, J.H. Enhancing of broadband sound absorption through soft matter. Mater. Horizons 2022, 9, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, X.; Zhai, W. Additively Manufactured Deformation-Recoverable and Broadband Sound-Absorbing Microlattice Inspired by the Concept of Traditional Perforated Panels. Adv. Mater. 2021, 33, 2104552. [Google Scholar] [CrossRef] [PubMed]
- Delany, M.; Bazley, E. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 1970, 3, 105–116. [Google Scholar] [CrossRef]
- Miki, Y. Acoustical properties of porous materials-Modifications of Delany-Bazley models. J. Acoust. Soc. Jpn. 1990, 11, 19–24. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range. J. Acoust. Soc. Am. 1956, 28, 168–178. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range. J. Acoust. Soc. Am. 1956, 28, 179–191. [Google Scholar] [CrossRef]
- Bolton, J.S.; Kang, Y.J. Elastic porous materials for sound absorption and transmission control. SAE Trans. 1997, 2576–2590. [Google Scholar]
- Miki, Y. Acoustical properties of porous materials-generalizations of empirical models. J. Acoust. Soc. Jpn. 1990, 11, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Champoux, Y.; Allard, J. Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Phys. 1991, 70, 1975–1979. [Google Scholar] [CrossRef]
- Johnson, D.L.; Koplik, J.; Dashen, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 1987, 176, 379–402. [Google Scholar] [CrossRef]
- Lafarge, D.; Lemarinier, P.; Allard, J.F.; Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 1997, 102, 1995–2006. [Google Scholar] [CrossRef] [Green Version]
- Pride, S.R.; Morgan, F.D.; Gangi, A.F. Drag forces of porous-medium acoustics. Phys. Rev. B 1993, 47, 4964–4978. [Google Scholar] [CrossRef] [PubMed]
- Allard, J.; Atalla, N. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Atalla, Y.; Panneton, R. Inverse acoustical characterization of open cell porous media using impedance tube measurements. Can. Acoust. 2005, 33, 11–24. [Google Scholar]
- Ring, T.P.; Langer, S.C. Design, Experimental and Numerical Characterization of 3D-Printed Porous Absorbers. Materials 2019, 12, 3397. [Google Scholar] [CrossRef] [Green Version]
- Lippitz, N.; Blech, C.; Langer, S.; Rösler, J. Identification of material parameters for the simulation of acoustic absorption of fouled sintered fiber felts. Materials 2016, 9, 709. [Google Scholar] [CrossRef] [Green Version]
- Jaouen, L.; Gourdon, E.; Glé, P. Estimation of all six parameters of Johnson-Champoux-Allard-Lafarge model for acoustical porous materials from impedance tube measurements. J. Acoust. Soc. Am. 2020, 148, 1998–2005. [Google Scholar] [CrossRef]
- Tychsen, J.; Rösler, J. Production and characterization of porous materials with customized acoustic and mechanical properties. In Fundamentals of High Lift for Future Civil Aircraft; Springer: Berlin/Heidelberg, Germany, 2021; pp. 497–512. [Google Scholar]
- Tychsen, J.; Lippitz, N.; Rösler, J. Modification of porous aluminum by cold rolling for low-noise trailing edge applications. Metals 2018, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Uphoff, S.; Krafczyk, M.; Kutscher, K.; Rurkowska, K.; Langer, S.; Lippitz, N.; Faßmann, B. A hierarchical approach to determining acoustic absorption properties of porous media combining pore-resolved and macroscopic models. J. Porous Media 2018, 21, 83–100. [Google Scholar] [CrossRef]
- Kuschmitz, S.; Ring, T.P.; Watschke, H.; Langer, S.C.; Vietor, T. Design and Additive Manufacturing of Porous Sound Absorbers—A Machine-Learning Approach. Materials 2021, 14, 1747. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Wang, M.; Cheng, B.; Hou, H. Inverse design and experimental verification of an acoustic sink based on machine learning. Appl. Acoust. 2021, 180, 108153. [Google Scholar] [CrossRef]
- Lähivaara, T.; Kärkkäinen, L.; Huttunen, J.M.; Hesthaven, J.S. Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography. J. Acoust. Soc. Am. 2018, 143, 1148–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, J.H.; Yang, S.S.; Kang, Y.J. Estimation of sound absorption coefficient of layered fibrous material using artificial neural networks. Appl. Acoust. 2020, 169, 107476. [Google Scholar] [CrossRef]
- Gardner, G.C.; O’Leary, M.E.; Hansen, S.; Sun, J. Neural networks for prediction of acoustical properties of polyurethane foams. Appl. Acoust. 2003, 64, 229–242. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G.; Puyana-Romero, V.; Trematerra, A. A comparison between numerical simulation models for the prediction of acoustic behavior of giant reeds shredded. Appl. Sci. 2020, 10, 6881. [Google Scholar] [CrossRef]
- Casaburo, A.; Magliacano, D.; Petrone, G.; Franco, F.; de Rosa, S. Optimizing the acoustic properties of a meta-material using machine learning techniques. In Proceedings of the INTER-NOISE 2021—2021 International Congress and Exposition of Noise Control Engineering, Glasgow, Scotland, 21–24 August 2021. [Google Scholar]
- Casaburo, A.; Magliacano, D.; Petrone, G.; Franco, F.; De Rosa, S. Gaussian-based machine learning algorithm for the design and characterization of a porous meta-material for acoustic applications. Appl. Sci. 2022, 12, 333. [Google Scholar] [CrossRef]
- Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; Zhu, J. Explainable AI: A brief survey on history, research areas, approaches and challenges. In Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing, Guilin, China, 24–25 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 563–574. [Google Scholar]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable ai: A review of machine learning interpretability methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef]
- Došilović, F.K.; Brčić, M.; Hlupić, N. Explainable artificial intelligence: A survey. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 0210–0215. [Google Scholar]
- Samek, W.; Wiegand, T.; Müller, K.R. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv 2017, arXiv:1708.08296. [Google Scholar]
- Samek, W.; Müller, K.R. Towards explainable artificial intelligence. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer: Berlin/Heidelberg, Germany, 2019; pp. 5–22. [Google Scholar]
- Ring, T.P.; Kuschmitz, S.; Vietor, T.; Langer, S.C. Design und Analyse generischer poröser Materialien mittels Machine-Learning Methoden. In Proceedings of the Fortschritte der Akustik-DAGA 2021, Stuttgart, Germany, 21–24 March 2021; Deutsche Gesellschaft für Akustik e.V.: Berlin, Germany, 2021. [Google Scholar]
- ISO. ISO 9053-2:2020; Acoustics—Determination of Airflow Resistance—Part 2: Alternating Airflow Method. Technical Report. International Standardisation Organisation: Geneva, Switzerland, 2020.
- ISO. ISO 10534-2:1998-11; Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method. Technical Report. International Standardisation Organisation: Geneva, Switzerland, 1998.
- Carbajo, J.; Molina-Jordá, J.; Maiorano, L.; Fang, N. Sound absorption of macro-perforated additively manufactured media. Appl. Acoust. 2021, 182, 108204. [Google Scholar] [CrossRef]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 31 October 2022).
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wong, F.S. First-order, second-moment methods. Comput. Struct. 1985, 20, 779–791. [Google Scholar] [CrossRef]
- Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 2002, 145, 280–297. [Google Scholar] [CrossRef]
- Herman, J.; Usher, W. SALib: An open-source Python library for Sensitivity Analysis. J. Open Source Softw. 2017, 2, 97. [Google Scholar] [CrossRef]
- Bratley, P.; Fox, B.L. Algorithm 659: Implementing Sobol’s quasirandom sequence generator. Acm Trans. Math. Softw. 1988, 14, 88–100. [Google Scholar] [CrossRef]
- Matyka, M.; Koza, Z. How to calculate tortuosity easily? Aip Conf. Proc. 2012, 1453, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.R.; Yang, S.S.; Lee, J.W.; Kang, Y.J. Estimation and uncertainty analysis of fluid-acoustic parameters of porous materials using microstructural properties. J. Acoust. Soc. Am. 2020, 148, 308–323. [Google Scholar] [CrossRef]
- Perrot, C.; Chevillotte, F.; Panneton, R. Bottom-up approach for microstructure optimization of sound absorbing materials. J. Acoust. Soc. Am. 2008, 124, 940–948. [Google Scholar] [CrossRef]
Bar Width (d) | Bar Spacing (s) | Bar Height (h) | Plane Angle () |
---|---|---|---|
0.10–0.50 mm | 0.10–1.00 mm | 0.05–0.20 mm | 0–90° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ring, T.P.; Langer, S.C. On the Relationship of the Acoustic Properties and the Microscale Geometry of Generic Porous Absorbers. Appl. Sci. 2022, 12, 11066. https://doi.org/10.3390/app122111066
Ring TP, Langer SC. On the Relationship of the Acoustic Properties and the Microscale Geometry of Generic Porous Absorbers. Applied Sciences. 2022; 12(21):11066. https://doi.org/10.3390/app122111066
Chicago/Turabian StyleRing, Tobias P., and Sabine C. Langer. 2022. "On the Relationship of the Acoustic Properties and the Microscale Geometry of Generic Porous Absorbers" Applied Sciences 12, no. 21: 11066. https://doi.org/10.3390/app122111066
APA StyleRing, T. P., & Langer, S. C. (2022). On the Relationship of the Acoustic Properties and the Microscale Geometry of Generic Porous Absorbers. Applied Sciences, 12(21), 11066. https://doi.org/10.3390/app122111066