Lithological Mapping of Kohat Basin in Pakistan Using Multispectral Remote Sensing Data: A Comparison of Support Vector Machine (SVM) and Artificial Neural Network (ANN)
Abstract
:1. Introduction
- Apply better means of data annotation to obtain higher map accuracy than previous ML lithological mapping solutions at lower computational cost and higher spatial resolution.
- Present a novel system architecture to improve the existing geologic map of the Kohat Plateau using Sentinel-2 MSI datasets by (1) extracting training data from PCA, MNF, and previous maps for better annotation, and (2) comparison of SVM vs. ANN ML lithological classification.
- Obtain a medium spatial resolution (1:30,000), high-accuracy ML map for the region with subtle compositional differences in the region as a prospecting tool for further mineral exploration.
2. Materials and Methods
2.1. Geology of the Study Area
2.2. Multispectral Data and Google Earth Engine
- Multispectral remote sensing dataset of various satellites, such as Landsat, Sentinel, and Modis, along with an explorer web app and other ready-to-use products.
- Different AI/ML algorithms with high-speed parallel processing using Google computational infrastructure.
- The two most popular programming languages are JavaScript and Python, supporting (APIs) application.
- Programming interface with the development environments.
2.3. Supervised Classification Algorithms
2.3.1. Support Vector Machine (SVM)
2.3.2. Artificial Neural Network (ANN)
2.3.3. Accuracy Measures
3. Mapping Lithologies in the Kohat Plateau Using SVM and ANN
3.1. Spectral Features of Lithologies in the Region
3.2. Preprocessing of Data
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Era | Group | Sub-Group | Form. | Description [39] | Mineralogy |
---|---|---|---|---|---|
Pliocene | Siwalik Group | Middle Siwalik | Dhok Patan | Upper member: sandstone, light-gray; clay, light-reddish-brown and gray; conglomerate. | SiO2: 55.2–68.35%, Al2O3: 12.54–14.59%, Fe2O3: 3.07–6.03%, MgO: 1.8–4.03%, CaO: 5.08–7.86, Na2O: 2.35–2.61%, K2O: 1.51–2.91%, MnO: 0.06–0.96%, TiO2: 0.36–0.67%, P2O5: 0.078–0.159% [53]. |
Lower member: sandstone, micaceous; conglomerate lenses and, basal cobble beds. Formation = 70% sandstone and 30% clay. | |||||
Nagri | Sandstone, dark grey, micaceous, abundant in mafic minerals; conglomerate lenses. Clay, brownish-greyish-red, yellowish-brown and orange, silty, nodular. Formations = 50% sandstone; 50% shale. Field differentiation between Nagri and Dhok Patan is difficult. | Quartz = 43.9–63.4%, feldspar = 24.3–36.3%, and lithofragments = 11.7–25.6%. High in mafic silicates pyroxene, amphibole, olivine, and mica. Mica content in Nagri Formation ranges from 1–8% at Bahadar Khel anticline of the total frameworks [52]. | |||
Lower Siwalik | Chinji | Claystone: pointed heaps, mafic contribution of 23 to 47% (mudstone) and 56 to 69% (sandstone). | Quartz = 44–59%, feldspar = 24–32%, and lithotypes = 12–32% at the Bahadar Khel anticline [52]. | ||
Miocene | Rawalpindi Group | Kamlial | Mostly sandstone with low shale. Greenish-gray to grayish-green, fine- to coarse-grained sandstone; conglomerate lenses; micaceous; abundant mafic minerals. Clay, brownish-grey, green, and brownish-red. Beds of silty clay, siltstone, and claystone. | Quartz = 50–60%, feldspar = 22–25%, and mica 3–15%; mostly biotite. Traces of several heavy minerals exist, including epidote, garnet, monazite, ilmenite, rutile, apatite, chromite, and fluorite [52]. | |
Murree | Sandstone, purple, dark-grayish-brown, greenish-gray, medium to coarse-grained, conglomeratic. Shale, purple and reddish-brown. | Quartz = 66–89%, carbonate = 1–25%, and clays = 1–21%. Sandstone is arenite because all sandstone samples contain less than 15% matrix. Quartz = 25–40%, rock fragments = 16–40%, and feldspar 4–11%. Matrix from 1–10% with iron [51]. | |||
Eocene | Chahrat Group | Kohat | Habib Rahi Limestone member: limestone; Sadkal member: shale, green, greenish-gray; Kaladhand member: limestone, thin-bedded; interbedded with shale; foraminifera common. | >95% as calcium carbonate [50]. | |
Mami Khel | Clay, brownish-red, silty; some beds of sandstone and conglomerate. Claystone + siltstone with no significant sandstone. | Quartz = 35%, feldspar = 3%, rock fragments = 20%. Heavy minerals include tourmaline, zircon, garnet, epidote, sphene and apatite. Hematite and calcite are the dominating cementing material with minor chlorite [49]. | |||
Jatta Gypsum | Jatta Gypsum: gypsum, bedded to massive. | Gypsum |
References
- Gupta, R.P. Spectra of Minerals and Rocks. In Remote Sensing Geology; Springer: Berlin/Heidelberg, Germany, 2003; pp. 33–52. ISBN 978-3-662-05283-9. [Google Scholar]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T.; et al. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Bachri, I.; Hakdaoui, M.; Raji, M.; Teodoro, A.C.; Benbouziane, A.; Cl, A. Machine Learning Algorithms for Automatic Lithological Mapping Using Remote Sensing Data: A Case Study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. ISPRS Int. J. Geo-Inf. 2019, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Hamimi, Z.; Hagag, W.; Kamh, S.; El-Araby, A.M.A. Application of remote-sensing techniques in geological and structural mapping of Atalla Shear Zone and Environs, Central Eastern Desert, Egypt. Arab. J. Geosci. 2020, 13, 414. [Google Scholar] [CrossRef]
- Khan, M.F.A.; Muhammad, K.; Bashir, S.; Ud Din, S.; Hanif, M. Mapping Allochemical Limestone Formations in Hazara, Pakistan Using Google Cloud Architecture: Application of Machine-Learning Algorithms on Multispectral Data. ISPRS Int. J. Geo-Inf. 2021, 10, 58. [Google Scholar] [CrossRef]
- Köhler, M.; Hanelli, D.; Schaefer, S.; Barth, A.; Knobloch, A.; Hielscher, P.; Cardoso-Fernandes, J.; Lima, A.; Teodoro, A.C. Lithium potential mapping using artificial neural networks: A case study from central portugal. Minerals 2021, 11, 1046. [Google Scholar] [CrossRef]
- Merembayev, T.; Kurmangaliyev, D.; Bekbauov, B.; Amanbek, Y. A Comparison of Machine Learning Algorithms in Predicting Lithofacies: Case Studies from Norway and Kazakhstan. Energies 2021, 14, 1896. [Google Scholar] [CrossRef]
- Öztan, N.S.; Süzen, M.L. Mapping evaporate minerals by ASTER. Int. J. Remote Sens. 2011, 32, 1651–1673. [Google Scholar] [CrossRef]
- Sekandari, M.; Aminpour, S.M.; Masoumi, I.; Pour, A.B.; Muslim, A.M.; Rahmani, O.; Hashim, M.; Zoheir, B.; Pradhan, B.; Misra, A. Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 Spectral Imagery for Exploration of Carbonate-Hosted Pb-Zn Deposits in the Central Iranian Terrane (CIT). Remote Sens. 2020, 12, 1239. [Google Scholar] [CrossRef] [Green Version]
- Tangestani, M.H.; Shayeganpour, S. Mapping a lithologically complex terrain using Sentinel-2A data: A case study of Suriyan area, southwestern Iran. Int. J. Remote Sens. 2020, 41, 3558–3574. [Google Scholar] [CrossRef]
- Salehi, S.; Mielke, C.; Brogaard Pedersen, C.; Dalsenni Olsen, S. Comparison of ASTER and sentinel-2 spaceborne datasets for geological mapping: A case study from North-East Greenland. Geol. Surv. Denmark Greenl. Bull. 2019, 43, 1–6. [Google Scholar] [CrossRef]
- El Atillah, A.; El Morjani, Z.E.A.; Souhassou, M. Use of the Sentinel-2A Multispectral Image for Litho-Structural and Alteration Mapping in Al Glo’a Map Sheet (1/50,000) (Bou Azzer-El Graara Inlier, Central Anti-Atlas, Morocco). Artif. Satell. 2019, 54, 73–96. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.K. Lithological Mapping using Digital Image Processing Techniques on Landsat 8 OLI Remote Sensing Data in Jahajpur, Bhilwara, Rajasthan. In Proceedings of the 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), Jaipur, India, 28–29 September 2019; pp. 43–48. [Google Scholar]
- Traore, M.; Çan, T.; Tekin, S. Discrimination of Iron Deposits Using Feature Oriented Principal Component Selection and Band Ratio Methods: Eastern Taurus /Turkey. Int. J. Environ. Geoinform. 2020, 7, 147–156. [Google Scholar] [CrossRef]
- Rowan, L.C.; Schmidt, R.G.; Mars, J.C. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sens. Environ. 2006, 104, 74–87. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Crósta, A.P.; De Souza Filho, C.R.; Azevedo, F.; Brodie, C. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Khan, A.; Faisal, S.; Shafique, M.; Khan, S.; Bacha, A.S. ASTER-based remote sensing investigation of gypsum in the Kohat Plateau, north Pakistan. Carbonates Evaporites 2020, 35, 3. [Google Scholar] [CrossRef]
- Rajendran, S.; Hersi, O.S.; Al-Harthy, A.; Al-Wardi, M.; El-Ghali, M.A.; Al-Abri, A.H. Capability of advanced spaceborne thermal emission and reflection radiometer (ASTER) on discrimination of carbonates and associated rocks and mineral identification of eastern mountain region (Saih Hatat window) of Sultanate of Oman. Carbonates Evaporites 2011, 26, 351–364. [Google Scholar] [CrossRef]
- Nasir, S.; Rajendran, S. ASTER Spectral Sensitivity of carbonate rocks—Study in Sultanate of Oman. Adv. Sp. Res. 2014, 53, 656–673. [Google Scholar] [CrossRef]
- Kabolizadeh, M.; Rangzan, K.; Mousavi, S.S.; Azhdari, E. Applying optimum fusion method to improve lithological mapping of sedimentary rocks using sentinel-2 and ASTER satellite images. Earth Sci. Inform. 2022, 15, 1765–1778. [Google Scholar] [CrossRef]
- Pal, M.; Rasmussen, T.; Porwal, A. Optimized Lithological Mapping from Multispectral and Hyperspectral Remote Sensing Images Using Fused Multi-Classifiers. Remote Sens. 2020, 12, 177. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.S.; Wang, Z.; Xiong, C.; Zhang, L. Accurate annotation of remote sensing images via active spectral clustering with little expert knowledge. Remote Sens. 2015, 7, 15014–15045. [Google Scholar] [CrossRef] [Green Version]
- Brown, W.M.; Gedeon, T.D.; Groves, D.I.; Barnes, R.G. Artificial neural networks: A new method for mineral prospectivity mapping. Aust. J. Earth Sci. 2000, 47, 757–770. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Lee, S. Application of Artificial Neural Network for Gold—Silver Deposits Potential Mapping: A Case Study of Korea. Nat. Resour. Res. 2010, 19, 103–124. [Google Scholar] [CrossRef]
- Othman, A.A.; Gloaguen, R. Integration of spectral, spatial and morphometric data into lithological mapping: A comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq. J. Asian Earth Sci. 2017, 146, 90–102. [Google Scholar] [CrossRef]
- Othman, A.A.; Gloaguen, R. Improving lithological mapping by SVM classification of spectral and morphological features: The discovery of a new chromite body in the Mawat ophiolite complex (Kurdistan, NE Iraq). Remote Sens. 2014, 6, 6867–6896. [Google Scholar] [CrossRef] [Green Version]
- Shirmard, H.; Farahbakhsh, E.; Müller, R.D.; Chandra, R. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sens. Environ. 2022, 268, 112750. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning with Python, 1st ed.; Manning Publications Co.: Shelter Island, NY, USA, 2017; ISBN 1617294438. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 9780387848587. [Google Scholar]
- Morales, E.F.; Zaragoza, J.H. An introduction to reinforcement learning. In Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions; IGI Global: Hershey, PA, USA, 2011; pp. 63–80. ISBN 9781609601652. [Google Scholar]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Sicre, C.M.; Dedieu, G. Effect of training class label noise on classification performances for land cover mapping with satellite image time series. Remote Sens. 2017, 9, 173. [Google Scholar] [CrossRef]
- Hird, J.N.; DeLancey, E.R.; McDermid, G.J.; Kariyeva, J. Google earth engine, open-access satellite data, and machine learning in support of large-area probabilisticwetland mapping. Remote Sens. 2017, 9, 1315. [Google Scholar] [CrossRef] [Green Version]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Alizadeh Moghaddam, S.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Ahmad, S.; Ali, F.; Ahmad, I.; Hamidullah, S. Geological map of the Kohat Plateau, NW Himalaya, NWFP. Peshawar, Pakistan. Geol. Bull. Univ. Peshawar 2001, 34. [Google Scholar]
- Meissner, C.R.; Master, J.M.; Rashid, M.A.; Hussain, M. Stratigraphy of the Kohat Quadrangle, Pakistan; USGS professional paper 716-D; U.S. Govt. Print. Off.: Washington, DC, USA, 1974; 29p. [CrossRef] [Green Version]
- Bachri, I.; Hakdaoui, M.; Raji, M.; Benbouziane, A.; Mhamdi, H.S. Identification of Lithology Using Sentinel-2A Through an Ensemble of Machine Learning Algorithms. Int. J. Appl. Geospatial Res. 2022, 13, 1–17. [Google Scholar] [CrossRef]
- Wang, Z.; Zuo, R.; Dong, Y. Mapping of himalaya leucogranites based on ASTER and sentinel-2A datasets using a hybrid method of metric learning and random forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1925–1936. [Google Scholar] [CrossRef]
- Janati, M.H.; Soulaimani, A.; Admou, H.; Youbi, N.; Hafid, A.; Hefferan, K.P. Application of ASTER remote sensing data to geological mapping of basement domains in arid regions: A case study from the Central Anti-Atlas, Iguerda inlier, Morocco. Arab. J. Geosci. 2013, 7, 2407–2422. [Google Scholar] [CrossRef]
- Fal, S.; Maanan, M.; Baidder, L.; Rhinane, H. The contribution of Sentinel-2 satellite images for geological mapping in the south of Tafilalet basin (Eastern Anti-Atlas, Morocco). In Proceedings of the 5th International Conference on Geoinformation Science—GeoAdvances, Casablanca, Morocco, 10–11 October 2018; The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: Casablanca, Morrocco, 2019; Volume XLII-4/W12, pp. 75–82. [Google Scholar]
- Abbasi, N.; Yasin, M. Petrography and Diagenetic History of Nagri Formation Sandstone in District Bagh and Muzaffarabad, Pakistan. Pakistan J. Geol. 2017, 1, 21–23. [Google Scholar] [CrossRef]
- Pivnik, D.A.; Sercombe, W.J. Transpression- and compression-related, evaporite-controlled faulting and folding in the Kohat Plateau, NW Pakistan, in Himalayan tectonics: (Searle, M.P., and Treloar, P.J., eds.). Geol. Soc. London Spec. Publ. 1993, 74, 559–580. [Google Scholar] [CrossRef]
- Pivnik, D.A.; Wells, N.A. The transition from Tethys to the Himalaya as recorded in northwest Pakistan. Geol. Soc. Am. Bull. 1996, 108, 1295–1313. [Google Scholar] [CrossRef]
- Ullah, K. Lithofacies, Petrography and Geochemistry of the Neogene Molasse Sequence of Himalayan Foreland Basin, Southwestern Kohat, Pakistan. Ph.D. Thesis, National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan, 2009. [Google Scholar]
- Hussain, H.; Zhang, S. Structural evolution of the Kohat fold and thrust belt in the Shakardarra area (South eastern Kohat, Pakistan). Geosciences 2018, 8, 311. [Google Scholar] [CrossRef]
- Bilal, A.; Khan, M.S. Petrography and Provenance of Sandstone and Studies of Shale of Kuldana Formation, Kalamula and Khursheedabad Area, Kahuta, Azad Kashmir. Earth Sci. Malaysia 2017, 1, 21–31. [Google Scholar] [CrossRef]
- Bilqees, R.; Shah, T. Industrial Applications of Limestone Deposits of Kohat, NWFP: A Research Towards the Sustainability of the Deposits. Pak. J. Sci. Ind. Res. 2007, 50, 293–298. [Google Scholar] [CrossRef]
- Mughal, M.S.; Zhang, C.; Du, D.; Zhang, L.; Mustafa, S.; Hameed, F.; Khan, M.R.; Zaheer, M.; Blaise, D. Petrography and provenance of the Early Miocene Murree Formation, Himalayan Foreland Basin, Muzaffarabad, Pakistan. J. Asian Earth Sci. 2018, 162, 25–40. [Google Scholar] [CrossRef]
- Ullah, K.; Arif, M.; Shah, M.T. Petrography of Sandstones from the Kamlial and Chinji Formations, Southwestern Kohat Plateau, NW Pakistan: Implications for Source Lithology and Paleoclimate. J. Himal. Earth Sci. 2006, 39, 1–13. [Google Scholar]
- Ali, A.; Nabi, A.; Zhong, F.; Pan, J.; Yan, J. Genesis of sandstone type uranium deposit in Dhok Pathan Formation, Siwaliks Group of Trans-Indus Salt Range (Surghar range), Pakistan. In Proceedings of the International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018), Vienna, Austria, 25–29 June 2018; pp. 24–27. [Google Scholar]
- der Werff, H.; der Meer, F. Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing. Remote Sens. 2016, 8, 883. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; El-Battay, A.; Bannari, R.; Rhinane, H. Sentinel-MSI VNIR and SWIR bands sensitivity analysis for soil salinity discrimination in an arid landscape. Remote Sens. 2018, 10, 855. [Google Scholar] [CrossRef] [Green Version]
- Din, S.U.; Muhammad, K.; Khan, M.F.A.; Bashir, S.; Sajid, M.; Khan, A. A fusion of feature-oriented principal components of multispectral data to map granite exposures of Pakistan. Appl. Sci. 2021, 11, 11486. [Google Scholar] [CrossRef]
- Vapnik, V. The support vector method of function estimation. In Nonlinear Modeling; Suykens, J.A.K., Vandewalle, J., Eds.; Springer: Boston, MA, USA, 1998; pp. 55–85. [Google Scholar]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A practical Guide to Support Vector Classification; Department of Computer Science National Taiwan University Taipei 106: Taiwan, China, 2010; pp. 1–16. [Google Scholar]
- Karatzoglou, A.; Meyer, D.; Hornik, K. Support Vector Algorithm in R. J. Stat. Softw. 2006, 15, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Damaševičius, R. Structural analysis of regulatory DNA sequences using grammar inference and Support Vector Machine. Neurocomputing 2010, 73, 633–638. [Google Scholar] [CrossRef]
- Haykin, S. Neural Network: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Delhi, India, 2001; ISBN 81-7808-300-0. [Google Scholar]
- Gajawada, S.K. The Math behind Artificial Neural Networks. Available online: https://towardsdatascience.com/the-heart-of-artificial-neural-networks-26627e8c03ba (accessed on 20 February 2022).
- Kotsiantis, S.B. Supervised Machine Learning: A Review of Classification Techniques. Informatica 2007, 31, 249–268. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; ISBN 9780262035613. [Google Scholar]
- Bindal, A. Normalization Techniques in Deep Neural Networks. Available online: https://medium.com/techspace-usict/normalization-techniques-in-deep-neural-networks-9121bf100d8 (accessed on 21 February 2022).
- Jain, V. Everything You Need to Know about “Activation Functions” in Deep Learning Models. Available online: https://towardsdatascience.com/everything-you-need-to-know-about-activation-functions-in-deep-learning-models-84ba9f82c253%0A (accessed on 22 February 2022).
- Nie, F.; Hu, Z.; Li, X. An investigation for loss functions widely used in machine learning. Commun. Inf. Syst. 2018, 18, 37–52. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Accuracy Assessment: A User’s Perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Brown, D.G.; Lusch, D.P.; Duda, K.A. Supervised classification of types of glaciated landscapes using digital elevation data. Geomorphology 1998, 21, 233–250. [Google Scholar] [CrossRef]
- Bentahar, I.; Raji, M. Comparison of Landsat OLI, ASTER, and Sentinel 2A data in lithological mapping: A Case study of Rich area (Central High Atlas, Morocco). Adv. Sp. Res. 2021, 67, 945–963. [Google Scholar] [CrossRef]
- Lin, J.; Wang, R.; Zhao, B.; Cheng, S. A comprehensive scheme for lithological mapping using Sentinel-2A and ASTER GDEM in weathered and vegetated coastal zone, Southern China. Open Geosci. 2019, 11, 982–996. [Google Scholar] [CrossRef]
- Ahmed, W.; Muhammad, K.; Glass, H.J.; Chatterjee, S.; Khan, A.; Hussain, A. Novel MLR-RF-Based Geospatial Techniques: A Comparison with OK. ISPRS Int. J. Geo-Inf. 2022, 11, 371. [Google Scholar] [CrossRef]
- Hushko, S.; Botelho, J.M.; Maksymova, I.; Slusarenko, K.; Kulishov, V. Sustainable development of global mineral resources market in Industry 4.0 context. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 8th International Scientific Conference on Sustainability in Energy and Environmental Science, Ivano-Frankivsk, Ukraine, 21–22 October 2020; Volume 628, p. 012025. [Google Scholar] [CrossRef]
- Aziz, A.; Schelén, O.; Bodin, U. A Study on Industrial IoT for the Mining Industry: Synthesized Architecture and Open Research Directions. IoT 2020, 1, 529–550. [Google Scholar] [CrossRef]
- Liu, Y.; Dhakal, S. Internet of Things technology in mineral remote sensing monitoring. Int. J. Circuit Theory Appl. 2020, 48, 2065–2077. [Google Scholar] [CrossRef]
- Molaei, F.; Rahimi, E.; Siavoshi, H.; Afrouz, S.G.; Tenorio, V. A Comprehensive Review on Internet of Things (IoT) and its Implications in the Mining Industry. Am. J. Eng. Appl. Sci. 2020, 13, 499–515. [Google Scholar] [CrossRef]
- Jimenez, J.R.C.; Zhao, P.; Mansourian, A.; Brovelli, M.A. Geospatial Blockchain: Review of decentralized geospatial data sharing systems. Agil. GIScience Ser. 2022, 3, 1–6. [Google Scholar] [CrossRef]
Lithological Units | Time Scale | Training Samples | Testing Samples |
---|---|---|---|
Alluvium (A) | Miocene | 2561 | 1100 |
Dhok Patan (D) | Miocene | 1430 | 625 |
Nagri (N) | Miocene | 1701 | 725 |
Chinji(C) | Miocene | 1408 | 589 |
Kamlial Sandstone (KS) | Miocene | 1993 | 833 |
Murree (M) | Miocene | 548 | 261 |
Kohat (K) | Eocene | 3042 | 1297 |
Mami Khel Clay (MK) | Eocene | 564 | 249 |
Jatta Gypsum (G) | Eocene | 2745 | 1100 |
Water (W) | NA | 1073 | 496 |
SVM | ANN | ||
---|---|---|---|
Kernel type | 1st-degree polynomial | Number of hidden layers | 4 |
Gamma (g) | 1/6 | Activation function | ReLU and softmax |
Cost (C) | 0.02 | Loss function | Categorical cross-entropy |
Optimizer | Adam with a learning rate of 0.0001 |
Algorithm | Training Accuracy | Testing Accuracy | Kappa Coefficient |
---|---|---|---|
SVM | 95.98 | 95.61 | 0.95 |
ANN | 94.48 | 95.73 | 0.95 |
Formations | G | DP | C | N | K | MK | M | KS | A | W | Producer Accuracy (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Jatta Gypsum (G) | 1094 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 0 | 0 | 99.5 |
Dhok Patan (DP) | 2 | 600 | 0 | 2 | 11 | 0 | 0 | 7 | 3 | 0 | 96.0 |
Chinji (C) | 2 | 3 | 547 | 15 | 15 | 0 | 0 | 1 | 5 | 1 | 92.9 |
Nagri (N) | 0 | 1 | 2 | 643 | 2 | 1 | 10 | 65 | 1 | 0 | 88.7 |
Kohat (K) | 1 | 2 | 5 | 0 | 1285 | 0 | 1 | 1 | 2 | 0 | 99.1 |
Mami Khel (MK) | 0 | 0 | 0 | 0 | 4 | 237 | 7 | 1 | 0 | 0 | 95.2 |
Murree (M) | 0 | 0 | 2 | 0 | 10 | 25 | 202 | 20 | 2 | 0 | 77.4 |
Kamlial (KS) | 1 | 7 | 1 | 10 | 3 | 6 | 1 | 796 | 8 | 0 | 95.6 |
Alluvium (A) | 0 | 18 | 1 | 0 | 1 | 0 | 1 | 5 | 1074 | 0 | 97.6 |
Water (W) | 0 | 1 | 6 | 0 | 3 | 0 | 0 | 0 | 0 | 486 | 98.0 |
User Accuracy (%) | 99.5 | 94.9 | 97.0 | 96.0 | 96.0 | 88.1 | 91.0 | 88.6 | 98.1 | 99.8 |
Formations | G | DP | C | N | K | MK | M | KS | A | W | Producer Accuracy (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Gypsum (G) | 1128 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 99.2 |
Dhok Patan (DP) | 0 | 578 | 3 | 8 | 6 | 0 | 0 | 3 | 27 | 0 | 92.5 |
Chinji (C) | 0 | 0 | 584 | 6 | 6 | 0 | 0 | 0 | 12 | 0 | 96.1 |
Nagri (N) | 3 | 4 | 7 | 691 | 1 | 0 | 1 | 32 | 1 | 0 | 93.4 |
Kohat (K) | 0 | 3 | 7 | 0 | 1285 | 4 | 3 | 0 | 2 | 0 | 98.5 |
Mami Khel (MK) | 0 | 0 | 0 | 0 | 3 | 225 | 16 | 0 | 0 | 0 | 92.2 |
Murree (M) | 0 | 0 | 1 | 0 | 18 | 14 | 186 | 8 | 0 | 0 | 81.9 |
Kamlial (KS) | 1 | 2 | 0 | 21 | 2 | 2 | 6 | 777 | 6 | 0 | 95.1 |
Alluvium (A) | 0 | 21 | 15 | 2 | 2 | 0 | 7 | 2 | 1053 | 0 | 95.6 |
Water (W) | 0 | 4 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 413 | 98.1 |
User Accuracy (%) | 99.6 | 94.3 | 94.3 | 94.9 | 97.1 | 91.8 | 84.9 | 93.6 | 95.6 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elahi, F.; Muhammad, K.; Din, S.U.; Khan, M.F.A.; Bashir, S.; Hanif, M. Lithological Mapping of Kohat Basin in Pakistan Using Multispectral Remote Sensing Data: A Comparison of Support Vector Machine (SVM) and Artificial Neural Network (ANN). Appl. Sci. 2022, 12, 12147. https://doi.org/10.3390/app122312147
Elahi F, Muhammad K, Din SU, Khan MFA, Bashir S, Hanif M. Lithological Mapping of Kohat Basin in Pakistan Using Multispectral Remote Sensing Data: A Comparison of Support Vector Machine (SVM) and Artificial Neural Network (ANN). Applied Sciences. 2022; 12(23):12147. https://doi.org/10.3390/app122312147
Chicago/Turabian StyleElahi, Fakhar, Khan Muhammad, Shahab Ud Din, Muhammad Fawad Akbar Khan, Shahid Bashir, and Muhammad Hanif. 2022. "Lithological Mapping of Kohat Basin in Pakistan Using Multispectral Remote Sensing Data: A Comparison of Support Vector Machine (SVM) and Artificial Neural Network (ANN)" Applied Sciences 12, no. 23: 12147. https://doi.org/10.3390/app122312147
APA StyleElahi, F., Muhammad, K., Din, S. U., Khan, M. F. A., Bashir, S., & Hanif, M. (2022). Lithological Mapping of Kohat Basin in Pakistan Using Multispectral Remote Sensing Data: A Comparison of Support Vector Machine (SVM) and Artificial Neural Network (ANN). Applied Sciences, 12(23), 12147. https://doi.org/10.3390/app122312147