Machine Learning Approaches for Slope Deformation Prediction Based on Monitored Time-Series Displacement Data: A Comparative Investigation
Abstract
:1. Introduction
- (1)
- We established two traditional machine learning models of the SVR and XGBoost and eight deep learning models, including the conventional DNN, CNN, RNN, LSTM, BiLSTM, Attention-LSTM, GRU, and transformer, while employing the linear ARIMA model as a baseline for comparison. The displacement data of seven in situ monitoring points of the Huanglianshu landslide located in eastern Chongqing were used as an example for verification.
- (2)
- We comparatively analyzed the prediction performance of the employed models based on four error metrics and provided a suggestion for selecting an appropriate prediction model for slope deformation.
2. Study Area
2.1. Overview of the Huanglianshu Landslide
2.2. Monitoring Data
3. Machine Learning Approaches for Slope Deformation Prediction
3.1. Overview
3.2. Data Preprocessing
3.2.1. Linear Interpolation
3.2.2. Data Standardization
3.3. Time-Series Forecasting Strategy
3.4. Employed Statistical and Machine Learning Approaches
3.4.1. Statistical Approach: ARIMA
3.4.2. Traditional Machine Learning Approaches
- (1)
- SVR
- (2)
- XGBoost
3.4.3. Deep Learning Approaches
- (1)
- Conventional DNN
- (2)
- CNN
- (3)
- Conventional RNN, LSTM, GRU, BiLSTM and Attention-LSTM
- (4)
- Transformer
4. Results
4.1. Results of Predicted Displacements
4.2. Prediction Metrics and Accuracy
5. Comparative Analysis
5.1. Stability Test of the Displacement Data and Evaluation of Model Performance
5.1.1. Stability Test of the Mointored Displacement Data
5.1.2. Evaluation of Model Prediction Performance
- (1)
- reflected the overall fit of the prediction models to the real displacement data. As shown in Figure 9b, when using as the evaluation index, all models had the highest prediction accuracies at the monitoring points FJ003 and FJ009, while the prediction accuracies at monitoring points FJ004, FJ005, FJ006, and FJ011 were relatively low. Specifically, monitoring point FJ006 had the lowest prediction accuracy. As a whole, except for the monitoring point FJ006, the of all other monitoring points reached more than 0.5, which showed that, after large-scale local sliding of the slope, the displacement data both within the deformation area and its surrounding area had a certain linear or nonlinear change characteristic, i.e., the slope deformation could be learned to achieve accurate prediction through a specific model.
- (2)
- Upon combing through the results of the four evaluation metrics in Figure 9, it can be concluded that the optimal prediction models at each monitoring point were the same when using the MAE and MAPE as evaluation metrics, and the optimal prediction models at each monitoring point were the same when using the and RMSE as evaluation metrics. In summary, the ARIMA, the Attention-LSTM, and the transformer model had higher prediction accuracies. In order to compare the accuracy differences of the models for the displacement data within and outside the deformation area, we list the best and worst prediction models at the seven monitoring points of the Huanglianshu landslide in Table 6. Table 6 indicated that, although the ARIMA model performed with outstanding prediction accuracy for the displacement data outside the deformation area, it did not perform as well as the transformer and Attention-LSTM models for the displacement data inside the deformation area. Second, the traditional machine learning models XGBoost and SVR had the worst prediction accuracies.
5.2. Comparative Analysis of the Model Characteristics Based on Prediction Results
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARIMA | Autoregressive Integrated Moving Average |
ADF | Augmented Dickey Fuller |
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
CNN | Convolutional Neural Network |
DNN | Deep Neural Network |
GRU | Gate Recurrent Unit |
LSTM | Long Short Term Memory |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
MSE | Mean Square Error |
NLP | Natural Language Processing |
RMSE | Root Mean Square Error |
RNN | Recurrent Neural Network |
RBF | Radial Basis Function |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
XGBoost | eXtreme Gradient Boost |
References
- Intrieri, E.; Gigli, G.; Mugnai, F.; Fanti, R.; Casagli, N. Design and implementation of a landslide early warning system. Eng. Geol. 2012, 147–148, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Dai, F.; Lee, C.; Ngai, Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Yao, W.; Zeng, Z.; Lian, C.; Tang, H. Training enhanced reservoir computing predictor for landslide displacement. Eng. Geol. 2015, 188, 101–109. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, P.; Zheng, J. Prediction of time to slope failure based on a new model. Bull. Eng. Geol. Environ. 2021, 80, 5279–5291. [Google Scholar] [CrossRef]
- Feng, X.T.; Zhao, H.; Li, S. Modeling non-linear displacement time series of geo-materials using evolutionary support vector machines. Int. J. Rock Mech. Min. Sci. 2004, 41, 1087–1107. [Google Scholar] [CrossRef]
- De Gooijer, J.; Hyndman, R. 25 years of time series forecasting. Int. J. Forecast. 2006, 22, 443–473. [Google Scholar] [CrossRef] [Green Version]
- Deb, C.; Zhang, F.; Yang, J.; Lee, S.; Shah, K. A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Gariano, S.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Tian, H.Q.; Li, Y.F. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy 2012, 98, 415–424. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Chen, W.; Shahabi, H.; Shirzadi, A.; Hong, H.; Akgun, A.; Tian, Y.; Liu, J.; Zhu, A.X.; Li, S. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull. Eng. Geol. Environ. 2019, 78, 4397–4419. [Google Scholar] [CrossRef]
- Li, H.; Xu, Q.; He, Y.; Deng, J. Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models. Landslides 2018, 15, 2047–2059. [Google Scholar] [CrossRef]
- Shi, J.; Guo, J.; Zheng, S. Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew. Sustain. Energy Rev. 2012, 16, 3471–3480. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G.; Piccialli, F. Machine learning for landslides prevention: A survey. Neural Comput. Appl. 2021, 33, 10881–10907. [Google Scholar] [CrossRef]
- Deng, L.; Smith, A.; Dixon, N.; Yuan, H. Machine learning prediction of landslide deformation behaviour using acoustic emission and rainfall measurements. Eng. Geol. 2021, 293. [Google Scholar] [CrossRef]
- Miao, F.; Wu, Y.; Xie, Y.; Li, Y. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides 2018, 15, 475–488. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Sci. Rev. 2021, 223. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Y.; Peng, G. Landslide susceptibility assessment using integrated deep learning algorithm along the china-nepal highway. Sensors 2018, 18, 4436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Multiple neural networks switched prediction for landslide displacement. Eng. Geol. 2015, 186, 91–99. [Google Scholar] [CrossRef]
- Pei, H.; Meng, F.; Zhu, H. Landslide displacement prediction based on a novel hybrid model and convolutional neural network considering time-varying factors. Bull. Eng. Geol. Environ. 2021, 80, 7403–7422. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Luo, H.; He, J.; Cheung, R. AI-powered landslide susceptibility assessment in Hong Kong. Eng. Geol. 2021, 288. [Google Scholar] [CrossRef]
- Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides 2019, 16, 677–694. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Tang, J.; He, Z.Y.; Tan, J.; Li, C. A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide. Nat. Hazards 2021, 105, 783–813. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar] [CrossRef]
- Liu, Z.; Gilbert, G.; Cepeda, J.; Lysdahl, A.; Piciullo, L.; Hefre, H.; Lacasse, S. Modelling of shallow landslides with machine learning algorithms. Geosci. Front. 2021, 12, 385–393. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G.; Prezioso, E.; Zhang, Z.; Xu, N. A deep learning approach using graph convolutional networks for slope deformation prediction based on time-series displacement data. Neural Comput. Appl. 2021. [Google Scholar] [CrossRef]
- Yan, L.; Chen, C.; Hang, T.; Hu, Y. A stream prediction model based on attention-LSTM. Earth Sci. Inform. 2021, 14, 723–733. [Google Scholar] [CrossRef]
- Cornia, M.; Baraldi, L.; Serra, G.; Cucchiara, R. Predicting human eye fixations via an LSTM-Based saliency attentive model. IEEE Trans. Image Process. 2018, 27, 5142–5154. [Google Scholar] [CrossRef] [Green Version]
- Schwaller, P.; Petraglia, R.; Zullo, V.; Nair, V.; Haeuselmann, R.; Pisoni, R.; Bekas, C.; Iuliano, A.; Laino, T. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 2020, 11, 3316–3325. [Google Scholar] [CrossRef] [Green Version]
- Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C.; Bekas, C.; Lee, A. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS Cent. Sci. 2019, 5, 1572–1583. [Google Scholar] [CrossRef] [Green Version]
- Sorjamaa, A.; Hao, J.; Reyhani, N.; Ji, Y.; Lendasse, A. Methodology for long-term prediction of time series. Neurocomputing 2007, 70, 2861–2869. [Google Scholar] [CrossRef] [Green Version]
- Hindriks, R.; Adhikari, M.; Murayama, Y.; Ganzetti, M.; Mantini, D.; Logothetis, N.; Deco, G. Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? NeuroImage 2016, 127, 242–256. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Xu, W.; Meng, Y.; Shi, C.; Wang, R. Prediction of landslide displacement based on GA-LSSVM with multiple factors. Bull. Eng. Geol. Environ. 2016, 75, 637–646. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, K.; Cai, C.; Liu, W.; Xie, J. Displacement prediction of step-like landslides based on feature optimization and VMD-Bi-LSTM: A case study of the Bazimen and Baishuihe landslides in the Three Gorges, China. Bull. Eng. Geol. Environ. 2021. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, T.; Liu, Y.; Jiang, Y. Univariate Forecasting of time series data Based on Seq2Seq Model. In Proceedings of the EITCE 2020: 2020 4th International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 6–8 November 2020; pp. 642–646. [Google Scholar] [CrossRef]
- Dong, X.; Shen, J.; Wang, W.; Shao, L.; Ling, H.; Porikli, F. Dynamical hyperparameter optimization via deep reinforcement learning in tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1515–1529. [Google Scholar] [CrossRef]
- de Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Caspi, I. Rtadf: Testing for bubbles with EViews. J. Stat. Softw. 2017, 81, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Zhang, L.; Lim, C. Evolving CNN-LSTM Models for Time Series Prediction Using Enhanced Grey Wolf Optimizer. IEEE Access 2020, 8, 161519–161541. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Qin, Z.; Liu, F.; Liu, L. Rainfall data feature extraction and its verification in displacement prediction of Baishuihe landslide in China. Bull. Eng. Geol. Environ. 2016, 75, 897–907. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Q.; Tang, M.; Nie, W.; Ma, S.; Xu, Z. Comparison of two optimized machine learning models for predicting displacement of rainfall-induced landslide: A case study in Sichuan Province, China. Eng. Geol. 2017, 218, 213–222. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.; Hoang, N.D.; Thanh, N.; Nguyen, D.; Van Liem, N.; Pradhan, B. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides 2017, 14, 447–458. [Google Scholar] [CrossRef]
- Rahimi, M.; Shafieezadeh, A.; Wood, D.; Kubatko, E.; Dormady, N. Bayesian calibration of multi-response systems via multivariate Kriging: Methodology and geological and geotechnical case studies. Eng. Geol. 2019, 260. [Google Scholar] [CrossRef]
Parameter | FJ003 | FJ004 | FJ005 | FJ006 | FJ009 | FJ010 | FJ011 |
---|---|---|---|---|---|---|---|
p | 1 | 3 | 1 | 1 | 0 | 1 | 1 |
d | 0 | 1 | 0 | 1 | 1 | 2 | 2 |
q | 0 | 0 | 2 | 1 | 0 | 0 | 0 |
Learning Rate | Batch Size | Number of Epochs | Optimizer | Loss Function |
---|---|---|---|---|
0.002 | 100 | 1000 | Adam | MSE |
Metric | Definition | Description |
---|---|---|
Mean absolute error | MAE = | is the predicted value, is the measured value, and n is the number of test data. MAE represents the average absolute error between measured and predicted values. |
Mean absolute percent error | MAPE = | MAPE represents the percentage of errors between measured and predicted values of all samples. |
Root mean square error | RMSE = | RMSE represents the root mean square error between measured and predicted values. |
Coefficient of determination | The closer the value of is to 1, the better the prediction performance of the model. |
Metric | Model | FJ003 | FJ004 | FJ005 | FJ006 | FJ009 | FJ010 | FJ011 |
---|---|---|---|---|---|---|---|---|
MAE | ARIMA | 2.7514 | 2.6987 | 1.7134 | 2.0778 | 4.5172 | 4.2154 | 2.5601 |
SVR | 3.1167 | 3.0527 | 1.9669 | 2.0236 | 4.5256 | 4.5768 | 3.2575 | |
XGBoost | 3.2107 | 2.7615 | 1.9541 | 2.2226 | 5.6654 | 4.2474 | 2.4652 | |
DNN | 3.4244 | 2.9413 | 1.8209 | 2.1979 | 5.6416 | 4.4444 | 3.0304 | |
CNN | 2.9597 | 3.0787 | 1.7600 | 2.2304 | 6.1500 | 4.9373 | 2.6765 | |
RNN | 2.8005 | 2.8538 | 1.7716 | 2.1441 | 4.7417 | 4.6331 | 2.6581 | |
LSTM | 2.7278 | 3.0349 | 1.7750 | 2.0582 | 5.3751 | 4.6890 | 3.0843 | |
BiLSTM | 2.7548 | 3.0843 | 1.8252 | 2.0733 | 5.1470 | 4.5105 | 2.5058 | |
Attention-LSTM | 2.8236 | 3.0341 | 1.7601 | 2.0081 | 5.2749 | 4.6290 | 2.3208 | |
GRU | 2.6942 | 2.7917 | 1.7928 | 2.0549 | 4.8912 | 4.2850 | 2.5024 | |
Transformer | 2.4117 | 3.0025 | 1.7117 | 2.0222 | 5.9667 | 3.9941 | 2.6732 | |
MAPE | ARIMA | 0.1761 | 0.3937 | 0.1310 | 0.4546 | 0.0152 | 0.0113 | 0.0229 |
SVR | 0.1901 | 0.4882 | 0.1571 | 0.4632 | 0.0153 | 0.0122 | 0.0289 | |
XGBoost | 0.2018 | 0.4364 | 0.1433 | 0.4997 | 0.0188 | 0.0114 | 0.0220 | |
DNN | 0.2202 | 0.5330 | 0.1397 | 0.4914 | 0.0194 | 0.0120 | 0.0271 | |
CNN | 0.1879 | 0.5294 | 0.1398 | 0.5062 | 0.0211 | 0.0133 | 0.0241 | |
RNN | 0.1731 | 0.4448 | 0.1352 | 0.5038 | 0.0159 | 0.0123 | 0.0236 | |
LSTM | 0.1674 | 0.5202 | 0.1340 | 0.4649 | 0.0180 | 0.0124 | 0.0275 | |
BiLSTM | 0.1689 | 0.5408 | 0.1390 | 0.4733 | 0.0172 | 0.0120 | 0.0224 | |
Attention-LSTM | 0.1735 | 0.5218 | 0.1305 | 0.4779 | 0.0181 | 0.0125 | 0.0208 | |
GRU | 0.1698 | 0.4322 | 0.1375 | 0.4739 | 0.0165 | 0.0114 | 0.0223 | |
Transformer | 0.1614 | 0.4946 | 0.1367 | 0.4444 | 0.0203 | 0.0106 | 0.0238 | |
RMSE | ARIMA | 4.2655 | 3.8868 | 2.5959 | 2.9387 | 7.2359 | 6.9043 | 4.4374 |
SVR | 4.6544 | 4.0596 | 2.7387 | 2.8294 | 7.4112 | 7.3795 | 5.7565 | |
XGBoost | 5.5068 | 4.1025 | 3.0221 | 3.2335 | 9.0456 | 6.8872 | 4.2473 | |
DNN | 4.8558 | 4.0541 | 2.5911 | 3.0223 | 8.1783 | 6.4410 | 4.8310 | |
CNN | 4.6576 | 4.1445 | 2.6057 | 3.0068 | 8.5456 | 6.7313 | 4.5103 | |
RNN | 4.3923 | 3.9846 | 2.5707 | 2.9604 | 7.4221 | 6.8591 | 4.4002 | |
LSTM | 4.3140 | 4.0351 | 2.5216 | 2.9264 | 8.2447 | 7.0540 | 4.5134 | |
BiLSTM | 4.3429 | 3.9516 | 2.5771 | 2.9241 | 7.8710 | 6.6652 | 4.3341 | |
Attention-LSTM | 4.3721 | 3.9583 | 2.5433 | 2.7559 | 7.4804 | 6.5511 | 4.2251 | |
GRU | 4.3724 | 3.9943 | 2.5824 | 2.8576 | 7.6167 | 6.5304 | 4.2470 | |
Transformer | 3.9680 | 3.9450 | 2.5914 | 2.8247 | 8.4681 | 6.3129 | 4.3167 | |
ARIMA | 0.8423 | 0.5088 | 0.5170 | 0.3253 | 0.8759 | 0.5672 | 0.4649 | |
SVR | 0.8122 | 0.4642 | 0.4625 | 0.3746 | 0.8698 | 0.5056 | 0.0995 | |
XGBoost | 0.7371 | 0.4528 | 0.3454 | 0.1832 | 0.8061 | 0.5693 | 0.5098 | |
DNN | 0.7956 | 0.4656 | 0.5188 | 0.2864 | 0.8415 | 0.6233 | 0.4057 | |
CNN | 0.8119 | 0.4415 | 0.5134 | 0.2937 | 0.8269 | 0.5886 | 0.4472 | |
RNN | 0.8327 | 0.4838 | 0.5264 | 0.3153 | 0.8695 | 0.5728 | 0.4738 | |
LSTM | 0.8386 | 0.4706 | 0.5443 | 0.3310 | 0.8389 | 0.5482 | 0.4464 | |
BiLSTM | 0.8365 | 0.4923 | 0.5240 | 0.3320 | 0.8532 | 0.5967 | 0.4895 | |
Attention-LSTM | 0.8343 | 0.4906 | 0.5364 | 0.4067 | 0.8674 | 0.6103 | 0.5149 | |
GRU | 0.8342 | 0.4813 | 0.5220 | 0.3621 | 0.8625 | 0.6128 | 0.5036 | |
Transformer | 0.8635 | 0.4940 | 0.5187 | 0.3768 | 0.8301 | 0.6382 | 0.4936 |
Monitoring Point | FJ003 | FJ004 | FJ005 | FJ006 | FJ009 | FJ010 | FJ011 |
---|---|---|---|---|---|---|---|
p-value | 0.000071 | 0.009987 | 0.006490 | 0.013365 | 0.002463 | 0.074062 | 0.797659 |
Monitoring Point | Outside the Deformation Area | Inside the Deformation Area | |||||
---|---|---|---|---|---|---|---|
FJ003 | FJ004 | FJ005 | FJ006 | FJ009 | FJ010 | FJ011 | |
Best model | Transformer | ARIMA | Attention-LSTM | Attention-LSTM | ARIMA | Transformer | Attention-LSTM |
Worst model | XGBoost | CNN | XGBoost | XGBoost | XGBoost | SVR | SVR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, N.; Yang, Q.; Sun, Y.; Mei, G. Machine Learning Approaches for Slope Deformation Prediction Based on Monitored Time-Series Displacement Data: A Comparative Investigation. Appl. Sci. 2023, 13, 4677. https://doi.org/10.3390/app13084677
Xi N, Yang Q, Sun Y, Mei G. Machine Learning Approaches for Slope Deformation Prediction Based on Monitored Time-Series Displacement Data: A Comparative Investigation. Applied Sciences. 2023; 13(8):4677. https://doi.org/10.3390/app13084677
Chicago/Turabian StyleXi, Ning, Qiang Yang, Yingjie Sun, and Gang Mei. 2023. "Machine Learning Approaches for Slope Deformation Prediction Based on Monitored Time-Series Displacement Data: A Comparative Investigation" Applied Sciences 13, no. 8: 4677. https://doi.org/10.3390/app13084677
APA StyleXi, N., Yang, Q., Sun, Y., & Mei, G. (2023). Machine Learning Approaches for Slope Deformation Prediction Based on Monitored Time-Series Displacement Data: A Comparative Investigation. Applied Sciences, 13(8), 4677. https://doi.org/10.3390/app13084677