Adaptive Visual Saliency Feature Enhancement of CBCT for Image-Guided Radiotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structural Similarity-Based Low-Rank Approximation
Algorithm 1 Structural similarity based low-rank approximation (SSLRA) |
Input: CBCT image |
Output: Denoised image |
1. for to do |
2. Compute |
3. Compute , |
4. while do |
5. Update , |
end while |
6. end for |
7. |
8. Reconstruct by Equation (3) with |
9. return: |
2.2. Visual Saliency Feature-Based Enhancement
3. Experiments and Analysis
3.1. Dataset and Experimental Setting
3.2. Subjective Comparison and Analysis
3.3. Quantitative Analysis
4. Support for CBCT and CT Registration in IGRT
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Niu, T.; Jia, X.; Vela, P.A.; Zhu, L.; Tanenbaum, A.R. Joint CT/CBCT deformable registration and CBCT enhancement for cancer radiotherapy. Med. Image Anal. 2013, 17, 387–400. [Google Scholar]
- Kidar, H.S.; Azizi, H. Enhancement of Hounsfield unit distribution in cone-beam CT images for adaptive radiation therapy: Evaluation of a hybrid correction approach. Phys. Med. 2020, 69, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Jang, Y.J.; Kim, K.B.; Bahng, J.; Choi, S.H. Characterization of Tissue Equivalent Materials Using 3D Printing for Patient-Specific DQA in Radiation Therapy. Appl. Sci. 2022, 12, 9768. [Google Scholar] [CrossRef]
- Zachiu, C.; De Senneville, B.D.; Tijssen, R.H.; Kotte, A.N.; Houweling, A.; Kerkmeijer, L.; Lagendijk, J.; Moonen, C.; Ries, M. Non-rigid CT/CBCT to CBCT registration for online external beam radiotherapy guidance. Phys. Med. Biol. 2017, 63, 015027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.; Gros, S.; Kron, T.; Wood, T.J.; Vassileva, J.; Small, W.; Min, U.N. Factors Affecting Implementation of Radiological Protection Aspects of Imaging in Radiotherapy. Appl. Sci. 2023, 13, 1533. [Google Scholar] [CrossRef]
- Xu, X.G. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: A review of the fifty-year history. Phys. Med. Biol. 2014, 59, R233. [Google Scholar] [CrossRef]
- Holmberg, O.; Malone, J.; Rehani, M.; McLean, D.; Czarwinski, R. Current issues and actions in radiation protection of patients. Eur. J. Radiol. 2010, 76, 15–19. [Google Scholar] [CrossRef]
- Khong, P.L.; Ringertz, H.; Donoghue, V.; Frush, D.; Rehani, M.; Appelgate, K.; Sanchez, R. ICRP publication 121: Radiological protection in paediatric diagnostic and interventional radiology. Ann. ICRP 2013, 155, 380–387. [Google Scholar] [CrossRef]
- Gianrico, S. Cone-Beam Computed Tomography and the Related Scientific Evidence. Appl. Sci. 2022, 12, 7140. [Google Scholar]
- Xie, L.; He, K.; Gong, J.; Xu, D. Multi-Intensity Optimization-Based CT and Cone Beam CT Image Registration. Electronics 2022, 11, 1862. [Google Scholar] [CrossRef]
- Gong, J.; He, K.; Xie, L.; Xu, D.; Yang, T. A Fast Image Guide Registration Supported by Single Direction Projected CBCT. Electronics 2022, 11, 645. [Google Scholar] [CrossRef]
- Hung, S.; Xiao, Y.; Li, H.; Li, D.; Xiao, Y.; Li, H.; Li, D. Research on improving radiotherapy accuracy based on Image-guided radiotherapy. Contrast Media Mol. Imaging 2022, 2022, 9696403. [Google Scholar] [CrossRef]
- He, K.; Tao, D.; Xu, D. Adaptive colour restoration and detail retention for image enhancement. IET Image Process. 2021, 15, 3685–3697. [Google Scholar] [CrossRef]
- Liu, R.; Ma, L.; Wang, Y.; Zhang, L. Learning converged propagations with deep prior ensemble for image enhancement. IEEE Trans. Image Process. 2018, 28, 1528–1543. [Google Scholar] [CrossRef] [Green Version]
- de Araujo, A.F.; Constantinou, C.E.; Tavares, J.M.R. New artificial life model for image enhancement. Expert Syst. Appl. 2014, 41, 5892–5906. [Google Scholar] [CrossRef] [Green Version]
- Yelmanova, E.S.; Romanyshyn, Y.M. Medical image contrast enhancement based on histogram. In Proceedings of the 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 18–20 April 2017; pp. 273–278. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 1997, 6, 451–462. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Sankaran, P. An automated multi scale retinex with color restoration for image enhancement. In Proceedings of the 2012 National Conference on Communications (NCC), Kharagpur, India, 3–5 February 2012; pp. 1–5. [Google Scholar]
- Hao, S.; Han, X.; Guo, Y.; Xu, X.; Wang, M. Low-light image enhancement with semi-decoupled decomposition. IEEE Trans. Multimed. 2020, 22, 3025–3038. [Google Scholar] [CrossRef]
- Al-Ameen, Z. Contrast enhancement of medical images using statistical methods with image processing concepts. In Proceedings of the 2020 6th International Engineering Conference “Sustainable Technology and Development” (IEC), Erbil, Iraq, 26–27 February 2020; pp. 169–173. [Google Scholar]
- Cassetta, M.; Stefanelli, L.V.; Pacifici, A.; Pacifici, L.; Barbato, E. How accurate is CBCT in measuring bone density? A comparative CBCT-CT in vitro study. Clin. Implant Dent. Relat. Res. 2014, 16, 471–478. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Xu, D.; Gong, J.; Xie, L. Fidelity-driven optimization reconstruction and details preserving guided fusion for multi-modality medical image. IEEE Trans. Multimed. 2022. [Google Scholar] [CrossRef]
- Wang, Y.; He, Q.; Luo, J. Fast randomized singular value decomposition-based clutter filtering for shear wave imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2363–2377. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zhang, F.; Wang, S.; Zhang, C.; Li, X. Detail preserving image denoising with patch-based structure similarity via sparse representation and SVD. Comput. Vis. Image Underst. 2021, 206, 103173. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, W.; Chen, Z. Group-based K-SVD denoising for bearing fault diagnosis. IEEE Sens. J. 2019, 19, 6335–6343. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, C.; Zhang, Y.; Liu, H. An efficient SVD-based method for image denoising. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 868–880. [Google Scholar] [CrossRef]
- Cong, R.; Lei, J.; Fu, H.; Cheng, M.; Lin, W.; Huang, Q. Review of visual saliency detection with comprehensive information. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 2941–2959. [Google Scholar] [CrossRef] [Green Version]
- Achanta, R.; Süsstrunk, S. Saliency detection using maximum symmetric surround. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 2653–2656. [Google Scholar]
- Ali, U.; Lee, I.H.; Mahmood, M.T. Guided image filtering in shape-from-focus: A comparative analysis. Pattern Recognit. 2021, 111, 107670. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, J.; Wang, J.; Sun, K.; Zhang, C.; Liu, J.; Hu, J. A model-driven network for guided image denoising. Inf. Fusion 2022, 85, 60–71. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Ma, J. Mutually guided image filtering. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1283–1890. [Google Scholar]
- Petro, A.B.; Sbert, C.; Morel, J.M. Multiscale retinex. Image Process. On Line 2014, 4, 71–88. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 2017, 27, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, J.; Yang, W.; Sun, X.; Guo, Z. Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 2018, 27, 2828–2841. [Google Scholar] [CrossRef]
- Trier, O.D.; Taxt, T. Evaluation of binarization methods for document images. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 312–315. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Kwok, J.T.; Wang, Y. Combination of images with diverse focuses using the spatial frequency. Inf. Fusion 2001, 2, 169–176. [Google Scholar] [CrossRef]
- He, K.; Gong, J.; Xie, L.; Zhang, X.; Xu, D. Regions preserving edge enhancement for multisensor-based medical image fusion. IEEE Trans. Instrum. Meas. 2021, 70, 5008513. [Google Scholar] [CrossRef]
- Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2015, 41, 541–551. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
Method | AG | SF | EI | UIQM |
---|---|---|---|---|
MSR | 4.4690 | 14.3406 | 41.3963 | 1.7695 |
MSRCR | 4.3526 | 14.3373 | 40.4904 | 1.7174 |
DCP | 3.0656 | 9.4439 | 27.2513 | 1.8540 |
CBF | 3.7935 | 11.6488 | 30.5138 | 2.1783 |
RRM | 5.4507 | 18.6302 | 48.4082 | 2.0375 |
SMIPC | 4.7708 | 15.2181 | 43.5509 | 1.7413 |
Proposed | 5.8681 | 16.1921 | 53.3944 | 1.9741 |
Method | AG | SF | EI | UIQM |
---|---|---|---|---|
MSR | 4.5997 | 14.8567 | 43.1076 | 1.7329 |
MSRCR | 4.4881 | 14.8235 | 42.2025 | 1.6932 |
DCP | 3.0383 | 9.3338 | 27.2469 | 1.8556 |
CBF | 4.0720 | 12.3792 | 32.8049 | 2.2907 |
RRM | 5.5267 | 18.9434 | 49.7821 | 1.9529 |
SMIPC | 4.8789 | 15.6855 | 45.0936 | 1.7019 |
Proposed | 5.9509 | 16.1871 | 54.7970 | 2.0232 |
Method | AG | SF | EI | UIQM |
---|---|---|---|---|
MSR | 3.6001 | 12.5238 | 33.6119 | 1.4794 |
MSRCR | 3.4437 | 12.2078 | 32.3220 | 1.4792 |
DCP | 2.3504 | 8.0239 | 20.6858 | 1.6847 |
CBF | 3.5567 | 11.7906 | 28.6938 | 2.0258 |
RRM | 5.0072 | 18.7826 | 44.6839 | 1.6157 |
SMIPC | 4.0578 | 13.9605 | 36.8604 | 1.4853 |
Proposed | 5.2918 | 15.1418 | 48.3878 | 1.8852 |
Method | AG | SF | EI | UIQM |
---|---|---|---|---|
MSR | 4.2137 | 12.2069 | 38.8824 | 1.8911 |
MSRCR | 3.9836 | 11.6625 | 36.8797 | 1.8193 |
DCP | 2.4708 | 8.1086 | 21.4251 | 2.2053 |
CBF | 3.3751 | 9.5269 | 28.0610 | 2.1004 |
RRM | 6.4005 | 19.8617 | 56.1125 | 2.2311 |
SMIPC | 4.7916 | 13.7912 | 43.5426 | 1.9177 |
Proposed | 6.0518 | 15.3863 | 54.7559 | 2.1374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; He, K.; Xu, D. Adaptive Visual Saliency Feature Enhancement of CBCT for Image-Guided Radiotherapy. Appl. Sci. 2023, 13, 4675. https://doi.org/10.3390/app13084675
Xie L, He K, Xu D. Adaptive Visual Saliency Feature Enhancement of CBCT for Image-Guided Radiotherapy. Applied Sciences. 2023; 13(8):4675. https://doi.org/10.3390/app13084675
Chicago/Turabian StyleXie, Lisiqi, Kangjian He, and Dan Xu. 2023. "Adaptive Visual Saliency Feature Enhancement of CBCT for Image-Guided Radiotherapy" Applied Sciences 13, no. 8: 4675. https://doi.org/10.3390/app13084675
APA StyleXie, L., He, K., & Xu, D. (2023). Adaptive Visual Saliency Feature Enhancement of CBCT for Image-Guided Radiotherapy. Applied Sciences, 13(8), 4675. https://doi.org/10.3390/app13084675