Physiological Effects of Red-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases
Abstract
:1. Introduction
2. Red-Colored Foods and Bioactive Compounds
2.1. Biological Activities of Flavonoids
2.1.1. Flavonols, Flavones, Flavanols, and Flavanones
2.1.2. Anthocyanins
2.1.3. Isoflavones
2.2. Biological Activities of Carotenoids
2.3. Biological Activities of Other Compounds (Organosulfur Compounds, Phenolic Acids)
3. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gaziano, T.; Reddy, K.S.; Paccaud, F.; Horton, S.; Chaturvedi, V. Cardiovascular disease. In Disease Control Priorities in Developing Countries, 2nd ed.; The International Bank for Reconstruction and Development: Washington, DC, USA, 2006. [Google Scholar]
- Mendis, S.; Banerjee, A. Cardiovascular disease: Equity and social determinants. In Equity, Social Determinants and Public Health Programmes; World Health Organization: Geneva, Switzerland, 2010; Volume 31, p. 48. [Google Scholar]
- Hajar, R. Framingham contribution to cardiovascular disease. Heart Views 2016, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Bano, K.A.; Batool, A. Metabolic syndrome, cardiovascular disease and type—2 diabetes. JPMA J. Pak. Med. Assoc. 2007, 57, 511. [Google Scholar] [PubMed]
- Pal, H.C.; Pearlman, R.L.; Afaq, F. Fisetin and its role in chronic diseases. In Anti-inflammatory Nutraceuticals and Chronic Diseases; Springer: Cham, Switzerland, 2016; pp. 213–244. [Google Scholar]
- Bhawana, D.; Neetu, S. Public knowledge of cardiovascular diseases and its risk factors among early adulthood: A review. IJAR 2015, 1, 658–660. [Google Scholar]
- Buttar, H.S.; Li, T.; Ravi, N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp. Clin. Cardiol. 2005, 10, 229. [Google Scholar] [PubMed]
- De Oliveira, E.P.; McLellan, K.C.P.; de Arruda Silveira, L.V.; Burini, R.C. Dietary factors associated with metabolic syndrome in Brazilian adults. Nutr. J. 2012, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Kwaśniewska, M.; Kaleta, D.; Dziankowska-Zaborszczyk, E.; Drygas, W. Healthy behaviours, lifestyle patterns and sociodemographic determinants of the metabolic syndrome. Cent. Eur. J. Public Health 2009, 17, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F.B.; Willett, W.C. Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am. J. Clin. Nutr. 2006, 84, 1489–1497. [Google Scholar] [CrossRef]
- Kouki, R.; Schwab, U.; Hassinen, M.; Komulainen, P.; Heikkilä, H.; Lakka, T.; Rauramaa, R. Food consumption, nutrient intake and the risk of having metabolic syndrome: The DR’s EXTRA Study. Eur. J. Clin. Nutr. 2011, 65, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.R.H.; Sagor, M.A.T.; Tabassum, N.; Potol, M.A.; Hossain, H.; Alam, M.A. Supplementation of Citrus maxima peel powder prevented oxidative stress, fibrosis, and hepatic damage in carbon tetrachloride (CCl4) treated rats. Evid. Based Complementary Altern. Med. 2015, 2015, 598179. [Google Scholar] [CrossRef] [Green Version]
- Abu Taher Sagor, M.; Mahmud Reza, H.; Tabassum, N.; Sikder, B.; Ulla, A.; Subhan, N.; Hemayet Hossain, M.; Ashraful Alam, M. Supplementation of rosemary leaves (Rosmarinus officinalis) powder attenuates oxidative stress, inflammation and fibrosis in carbon tetrachloride (CCl4) treated rats. Curr. Nutr. Food Sci. 2016, 12, 288–295. [Google Scholar] [CrossRef]
- Mohabbulla Mohib, M.; Fazla Rabby, S.; Paran, T.Z.; Mehedee Hasan, M.; Ahmed, I.; Hasan, N.; Abu Taher Sagor, M.; Mohiuddin, S. Protective role of green tea on diabetic nephropathy—A review. Cogent Biol. 2016, 2, 1248166. [Google Scholar] [CrossRef]
- Alam, P.; Raka, M.A.; Khan, S.; Sarker, J.; Ahmed, N.; Nath, P.D.; Hasan, N.; Mohib, M.M.; Tisha, A.; Sagor, M.A.T. A clinical review of the effectiveness of tomato (Solanum lycopersicum) against cardiovascular dysfunction and related metabolic syndrome. J. Herb. Med. 2019, 16, 100235. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans; December 2015 version; U.S. Department of Health and Human Services: Washington, DC, USA, 2019.
- Blekkenhorst, L.C.; Sim, M.; Bondonno, C.P.; Bondonno, N.P.; Ward, N.C.; Prince, R.L.; Devine, A.; Lewis, J.R.; Hodgson, J.M. Cardiovascular health benefits of specific vegetable types: A narrative review. Nutrients 2018, 10, 595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minich, D.M. A review of the science of colorful, plant-based food and practical strategies for “eating the rainbow”. J. Nutr. Metab. 2019, 2019, 2125070. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, N.; Saeed, S.; Khalid, S.; Sajjad, S.; Umme, Q.; Zubair, I.; Tariq, N.; Ayub, R.; Naveed, F.; Wahid, A.; et al. Red Color Foods in Heart Health. Merit Res. J. Food Sci. Technol. 2020, 5, 22–31. [Google Scholar] [CrossRef]
- Caballero, B.; Trugo, L.C.; Finglas, P.M. Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Terao, J.; Kawai, Y.; Murota, K. Vegetable flavonoids and cardiovascular disease. Asia Pac. J. Clin. Nutr. 2008, 17, 291–293. [Google Scholar] [PubMed]
- Mahmoud, A.M.; Hernandez Bautista, R.J.; Sandhu, M.A.; Hussein, O.E. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxidative Med. Cell. Longev. 2019, 2019, 5484138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Singh, R.K.; Navarre, D.A. R2R3-MYB transcription factors, StmiR858 and sucrose mediate potato flavonol biosynthesis. Hortic. Res. 2021, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Terahara, N. Flavonoids in foods: A review. Nat. Prod. Commun. 2015, 10, 521–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nankar, R.P.; Raman, M.; Doble, M. Nanoformulations of polyphenols for prevention and treatment of cardiovascular and metabolic disorders. In Emulsions; Elsevier: Amsterdam, The Netherlands, 2016; pp. 107–151. [Google Scholar]
- D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015, 106, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Das, A.B.; Goud, V.V.; Das, C. 9—Phenolic Compounds as Functional Ingredients in Beverages. In Value-Added Ingredients and Enrichments of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 285–323. [Google Scholar]
- Bulea, M.; Khanb, F.; Niazd, K. Flavonoids (flavones, flavonols, flavanones, flavanonols, flavanols or flavan-3-ols, isoflavones, anthocyanins, chalcones/coumestans). In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2015; pp. 42–56. [Google Scholar]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Lazarus, S.A.; Cao, G.; Muccitelli, H.; Hammerstone, J.F. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using high-performance liquid chromatography/mass spectrometry. J. Agric. Food Chem. 2001, 49, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E. 4.08—Extraction Techniques for the Determination of Phenolic Compounds in Food. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Academic Press: Oxford, UK, 2012; pp. 159–180. [Google Scholar]
- Ky, I.; Le Floch, A.; Zeng, L.; Pechamat, L.; Jourdes, M.; Teissedre, P.L. Tannins. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 247–255. [Google Scholar]
- Hollman, P.C.H.; Arts, I.C.W. Flavonols, flavones and flavanols–nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1081–1093. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Zuiter, A.S. Proanthocyanidin: Chemistry and Biology: From Phenolic Compounds to Proanthocyanidins. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Vidal, P.J.; López-Nicolás, J.M.; Gandía-Herrero, F.; García-Carmona, F. Inactivation of lipoxygenase and cyclooxygenase by natural betalains and semi-synthetic analogues. Food Chem. 2014, 154, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, H.G.; Sanlier, N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020, 60, 3290–3303. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Liu, J.W.; Ufur, H.; He, G.S.; Liqian, H.; Chen, P. The antihypertensive effect of ethyl acetate extract from red raspberry fruit in hypertensive rats. Pharmacogn. Mag. 2011, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, Ș.C.; Răchișan, A.L.; Negrean, V.; Perné, M.-G.; Donca, V.I.; Alexescu, T.-G.; Para, I. The effects of flavonoids in cardiovascular diseases. Molecules 2020, 25, 4320. [Google Scholar] [CrossRef] [PubMed]
- Koutsos, A.; Riccadonna, S.; Ulaszewska, M.M.; Franceschi, P.; Trošt, K.; Galvin, A.; Braune, T.; Fava, F.; Perenzoni, D.; Mattivi, F. Two apples a day lower serum cholesterol and improve cardiometabolic biomarkers in mildly hypercholesterolemic adults: A randomized, controlled, crossover trial. Am. J. Clin. Nutr. 2020, 111, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Afshani, M.R.; Sahebkar, A.; Keshvari, M.; Taheri, M.; Jahanian, E.; Rafieian-Kopaei, M.; Malekian, F.; Sarrafzadegan, N. Improvement of hypertension, endothelial function and systemic inflammation following short-term supplementation with red beet (Beta vulgaris L.) juice: A randomized crossover pilot study. J. Hum. Hypertens. 2016, 30, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Moazzen, H.; Alizadeh, M. Effects of pomegranate juice on cardiovascular risk factors in patients with metabolic syndrome: A double-blinded, randomized crossover controlled trial. Plant Foods Hum. Nutr. 2017, 72, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Mamaghani, M.; Saghafi-Asl, M.; Pirouzpanah, S.; Asghari-Jafarabadi, M. Effects of raw red onion consumption on metabolic features in overweight or obese women with polycystic ovary syndrome: A randomized controlled clinical trial. J. Obstet. Gynaecol. Res. 2014, 40, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.C.; Hooshmand, S.; Saadat, R.L.; Payton, M.E.; Brummel-Smith, K.; Arjmandi, B.H. Daily apple versus dried plum: Impact on cardiovascular disease risk factors in postmenopausal women. J. Acad. Nutr. Diet. 2012, 112, 1158–1168. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.A.; Going, S.B.; Chow, H.-H.S.; Patil, B.S.; Thomson, C.A. The effects of daily consumption of grapefruit on body weight, lipids, and blood pressure in healthy, overweight adults. Metabolism 2012, 61, 1026–1035. [Google Scholar] [CrossRef]
- Yoshida, K.; Mori, M.; Kondo, T. Blue flower color development by anthocyanins: From chemical structure to cell physiology. Nat. Prod. Rep. 2009, 26, 884–915. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Zia-Ul-Haq, M.; Saad, B. Anthocyanins and Human Health: Biomolecular and Therapeutic Aspects; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Clifford, M.N. Anthocyanins–nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1063–1072. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mejia, E.G.; Rebollo-Hernanz, M.; Aguilera, Y.; Martín-Cabrejas, M.A. Role of anthocyanins in oxidative stress and the prevention of cancer in the digestive system. In Cancer; Elsevier: Amsterdam, The Netherlands, 2021; pp. 265–280. [Google Scholar]
- Reed, J. Cranberry flavonoids, atherosclerosis and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2002, 42, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Betts, N.M.; Ortiz, J.; Simmons, B.; Wu, M.; Lyons, T.J. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr. Res. 2011, 31, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novotny, J.A.; Baer, D.J.; Khoo, C.; Gebauer, S.K.; Charron, C.S. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J. Nutr. 2015, 145, 1185–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboo Bakkar, Z.; Fulford, J.; Gates, P.E.; Jackman, S.R.; Jones, A.M.; Bond, B.; Bowtell, J.L. Montmorency cherry supplementation attenuates vascular dysfunction induced by prolonged forearm occlusion in overweight, middle-aged men. J. Appl. Physiol. 2019, 126, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.A.; Navaei, N.; Pourafshar, S.; Jaime, S.J.; Akhavan, N.S.; Alvarez-Alvarado, S.; Proaño, G.V.; Litwin, N.S.; Clark, E.A.; Foley, E.M. Effects of montmorency Tart Cherry juice consumption on cardiometabolic biomarkers in adults with metabolic syndrome: A randomized controlled pilot trial. J. Med. Food 2020, 23, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Kent, K.; Charlton, K.E.; Jenner, A.; Roodenrys, S. Acute reduction in blood pressure following consumption of anthocyanin-rich cherry juice may be dose-interval dependant: A pilot cross-over study. Int. J. Food Sci. Nutr. 2016, 67, 47–52. [Google Scholar] [CrossRef]
- Keane, K.M.; George, T.W.; Constantinou, C.L.; Brown, M.A.; Clifford, T.; Howatson, G. Effects of Montmorency tart cherry (Prunus Cerasus L.) consumption on vascular function in men with early hypertension. Am. J. Clin. Nutr. 2016, 103, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Fu, D.X.; Wilkinson, M.; Simmons, B.; Wu, M.; Betts, N.M.; Du, M.; Lyons, T.J. Strawberries decrease atherosclerotic markers in subjects with metabolic syndrome. Nutr. Res. 2010, 30, 462–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, C.K.; Skulas-Ray, A.C.; Gaugler, T.L.; Meily, S.; Petersen, K.S.; Kris-Etherton, P.M. Effects of cranberry juice supplementation on cardiovascular disease risk factors in adults with elevated blood pressure: A randomized controlled trial. Nutrients 2021, 13, 2618. [Google Scholar] [CrossRef]
- Desai, T.; Roberts, M.; Bottoms, L. Effects of short-term continuous Montmorency tart cherry juice supplementation in participants with metabolic syndrome. Eur. J. Nutr. 2021, 60, 1587–1603. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Izuora, K.; Betts, N.M.; Kinney, J.W.; Salazar, A.M.; Ebersole, J.L.; Scofield, R.H. Dietary Strawberries Improve Cardiometabolic Risks in Adults with Obesity and Elevated Serum LDL Cholesterol in a Randomized Controlled Crossover Trial. Nutrients 2021, 13, 1421. [Google Scholar] [CrossRef]
- Dos S. Baiao, D.; da Silva, D.V.; Paschoalin, V.M. Beetroot, a remarkable vegetable: Its nitrate and phytochemical contents can be adjusted in novel formulations to benefit health and support cardiovascular disease therapies. Antioxidants 2020, 9, 960. [Google Scholar] [CrossRef]
- Martin, S.S. Accumulation of the flavonoids betagarin and betavulgarin in Beta vulgaris infected by the fungus Cercospora beticola. Physiol. Plant Pathol. 1977, 11, 297–303. [Google Scholar] [CrossRef]
- Goodwin, T. Metabolism, nutrition, and function of carotenoids. Annu. Rev. Nutr. 1986, 6, 273–297. [Google Scholar] [CrossRef]
- Olson, J.A. Biological actions of carotenoids: Introduction. J. Nutr. 1989, 119, 94–95. [Google Scholar] [CrossRef]
- Paiva, S.A.; Russell, R.M. β-carotene and other carotenoids as antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Rao, A. Carotenoids and chronic diseases. Drug Metab. Drug Interact. 2000, 17, 189–210. [Google Scholar] [CrossRef] [PubMed]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gerster, H. The potential role of lycopene for human health. J. Am. Coll. Nutr. 1997, 16, 109–126. [Google Scholar] [CrossRef]
- Britton, G. Structure and properties of carotenoids in relation to function. FASEB J. 1995, 9, 1551–1558. [Google Scholar] [CrossRef]
- Colmán-Martínez, M.; Martínez-Huélamo, M.; Valderas-Martínez, P.; Arranz-Martínez, S.; Almanza-Aguilera, E.; Corella, D.; Estruch, R.; Lamuela-Raventós, R.M. trans-Lycopene from tomato juice attenuates inflammatory biomarkers in human plasma samples: An intervention trial. Mol. Nutr. Food Res. 2017, 61, 1600993. [Google Scholar] [CrossRef] [PubMed]
- Ferro, Y.; Mazza, E.; Angotti, E.; Pujia, R.; Mirarchi, A.; Salvati, M.A.; Terracciano, R.; Savino, R.; Romeo, S.; Scuteri, A. Effect of a novel functional tomato sauce (OsteoCol) from vine-ripened tomatoes on serum lipids in individuals with common hypercholesterolemia: Tomato sauce and hypercholesterolemia. J. Transl. Med. 2021, 19, 19. [Google Scholar] [CrossRef]
- Wolak, T.; Sharoni, Y.; Levy, J.; Linnewiel-Hermoni, K.; Stepensky, D.; Paran, E. Effect of tomato nutrient complex on blood pressure: A double blind, randomized dose–response study. Nutrients 2019, 11, 950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xaplanteris, P.; Vlachopoulos, C.; Pietri, P.; Terentes-Printzios, D.; Kardara, D.; Alexopoulos, N.; Aznaouridis, K.; Miliou, A.; Stefanadis, C. Tomato paste supplementation improves endothelial dynamics and reduces plasma total oxidative status in healthy subjects. Nutr. Res. 2012, 32, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Ghavipour, M.; Saedisomeolia, A.; Djalali, M.; Sotoudeh, G.; Eshraghyan, M.R.; Moghadam, A.M.; Wood, L.G. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br. J. Nutr. 2013, 109, 2031–2035. [Google Scholar] [CrossRef] [PubMed]
- Gammone, M.A.; Pluchinotta, F.R.; Bergante, S.; Tettamanti, G.; D’Orazio, N. Prevention of cardiovascular diseases with carotenoids. Front. Biosci. 2017, 9, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The role of carotenoids in the prevention of human pathologies. Biomed. Pharmacother. 2004, 58, 100–110. [Google Scholar] [CrossRef]
- Ellis, A.C.; Mehta, T.; Nagabooshanam, V.A.; Dudenbostel, T.; Locher, J.L.; Crowe-White, K.M. Daily 100% watermelon juice consumption and vascular function among postmenopausal women: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2959–2968. [Google Scholar] [CrossRef] [PubMed]
- Lum, T.; Connolly, M.; Marx, A.; Beidler, J.; Hooshmand, S.; Kern, M.; Liu, C.; Hong, M.Y. Effects of fresh watermelon consumption on the acute satiety response and cardiometabolic risk factors in overweight and obese adults. Nutrients 2019, 11, 595. [Google Scholar] [CrossRef] [Green Version]
- Shanely, R.A.; Zwetsloot, J.J.; Jurrissen, T.J.; Hannan, L.C.; Zwetsloot, K.A.; Needle, A.R.; Bishop, A.E.; Wu, G.; Perkins-Veazie, P. Daily watermelon consumption decreases plasma sVCAM-1 levels in overweight and obese postmenopausal women. Nutr. Res. 2020, 76, 9–19. [Google Scholar] [CrossRef]
- Vasantha Rupasinghe, H.P.; Nair, S.V.G.; Robinson, R.A. Chapter 8—Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions. In Studies in Natural Products Chemistry; Atta ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 42, pp. 229–266. [Google Scholar]
- Clifford, M.N. Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. J. Sci. Food Agric. 1999, 79, 362–372. [Google Scholar] [CrossRef]
- Lam, T.; Kadoya, K.; Iiyama, K. Bonding of hydroxycinnamic acids to lignin: Ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry 2001, 57, 987–992. [Google Scholar] [CrossRef]
- Paliyath, G.; Murr, D.P.; Handa, A.K.; Lurie, S. Postharvest Biology and Technology of Fruits, Vegetables, and Flowers; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Clifford, M.N.; Scalbert, A. Ellagitannins–nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1118–1125. [Google Scholar] [CrossRef]
- Abubakar, S.M.; Ukeyima, M.T.; Spencer, J.P.; Lovegrove, J.A. Acute effects of Hibiscus sabdariffa calyces on postprandial blood pressure, vascular function, blood lipids, biomarkers of insulin resistance and inflammation in humans. Nutrients 2019, 11, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemura, S.; Yoshimasu, K.; Fukumoto, J.; Mure, K.; Nishio, N.; Kishida, K.; Yano, F.; Mitani, T.; Takeshita, T.; Miyashita, K. Safety and adherence of Umezu polyphenols in the Japanese plum (Prunus mume) in a 12-week double-blind randomized placebo-controlled pilot trial to evaluate antihypertensive effects. Environ. Health Prev. Med. 2014, 19, 444–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salanță, L.C.; Uifălean, A.; Iuga, C.-A.; Tofană, M.; Cropotova, J.; Pop, O.L.; Pop, C.R.; Rotar, M.A.; Bautista-Ávila, M.; González, C.V. Valuable food molecules with potential benefits for human health. In The Health Benefits of Foods-Current Knowledge and Further Development; IntechOpen: London, UK, 2020. [Google Scholar]
- Mozaffarian, D.; Wu, J.H. Flavonoids, dairy foods, and cardiovascular and metabolic health: A review of emerging biologic pathways. Circ. Res. 2018, 122, 369–384. [Google Scholar] [CrossRef] [PubMed]
Major Flavonoid Classes | Structure | Family Members | Dietary Sources |
---|---|---|---|
Flavonols |
| Beet1), Tomato2), Italian sweet red pepper3), Red radish4), Cranberry5), Cherry6), Red sweet potato7), Strawberry8), Red raspberry9), Watermelon10), Red grapefruit11), Red apples12), Prickly pear13), Plum14), Red onion15), Acerola16), Redcurrant17), Red huckleberry18), Fig19) | |
Flavones |
| Beet1), Italian sweet red pepper2), Red sweet potato3), Watermelon4), Red apples5), Fig6) | |
Flavanols |
| Cranberry1), Pomegranate2), Cherry3), Strawberry4), Red raspberry5), Red apples6), Plum7), Redcurrant8), Fig9) | |
Flavanones |
| Beet1), Red grapefruit2) | |
Anthocyanins |
| Cranberry1), Cherry2), Red sweet potato3), Strawberry4), Red raspberry5), Red apples6), Plum7), Red onion8), Acerola9), Redcurrant10), Fig11) | |
Isoflavone |
| Beet1), Cherry2) | |
Major Carotenoid Classes | Structure | Family Members | Dietary Sources |
Carotenoids |
| Beet1), Tomato2), Italian sweet red pepper3), Red radish4), Cranberry5), Red sweet potato6), Strawberry7), Red raspberry8), Watermelon9), Red grapefruit10), Red apples11), Prickly pear12), Plum13), Redcurrant14), Fig15), Adzuki bean16) | |
Major Phenolic Acid Classes | Structure | Family Members | Dietary Sources |
Hydroxybenzoic acids |
| Beet1), Tomato2), Cranberry3), Strawberry4), Red raspberry5), Red grapefruit6), Red apples7), Plum8), Red onion9), Radicchio (Red chicory)10), Redcurrant11), Red huckleberry12) | |
Hydroxycinnamic acids |
| Beet1), Tomato2), Italian sweet red pepper3), Red radish4), Cranberry5), Red sweet potato6), Strawberry7), Red raspberry8), Watermelon9), Red grapefruit10), Red apples11), Plum12), Red onion13), Radicchio (Red chicory)14), Redcurrant15), Red huckleberry16), Fig17) | |
Major Organosulfur Compound Classes | Structure | Family Members | Dietary Sources |
Organosulfur compounds |
| Tomato1), Red radish2), Red onion3), Fig4) |
The First Author (Publication Year) | Study Design | Duration | Intervention | Control | Participants | Mean Age | Main Outcome |
---|---|---|---|---|---|---|---|
Koutsos, Athanasios, et al. (2020) [20] | Double-blind, randomized, placebo-controlled, crossover | 8 weeks | 2 apples/d (340 g without core) (n = 40) | Sugar-and energy-matched apple control beverage (n = 40) | 29–69 years old, with BMI 19–33 kg/m2 and TC > 5.2 mmol/L (mildly hypercholesterolemic) | 51.0 ± 11.0 | Total cholesterol (TC) ↓ Low-density lipoprotein (LDL) ↓ Triacylglycerol ↓ Intercellular adhesion molecule 1 (ICAM-1) ↓ |
Chai, Sheau C., et al. (2012) [21] | Randomized, placebo-controlled | 12 months | Dried apple (75 g/day) (n = 45) | Placebo (n = 55) | Postmenopausal women (1 to 10 years past menopause) | 56.6 ± 4.5 | Atherogenic cholesterol levels ↓ |
Asgary, Sedigheh, et al. (2016) [22] | Assessor-blind, randomized, placebo-controlled, crossover | 4 weeks | Beetroot juice 250 mL (n = 12) | Cooked beet 250 g (n = 12) | 25–68 years old, SBP 130–139 mm Hg or DBP 85–89 mm Hg | 52.8 ± 5.8 | High-sensitivity C-reactive protein (hs-CRP) ↓ Tumor necrosis factor-alpha (TNF-α) ↓ Flow-mediated dilation (FMD) ↑ Total antioxidant capacity ↑ High-density lipoprotein (HDL) cholesterol ↑ Low-density lipoprotein (LDL) cholesterol ↓ Total cholesterol (TC) ↓ |
Moazzen, Hossein, and Mohammad Alizadeh. (2017) [23] | Double-blind, randomized, placebo-controlled, crossover | acute | 500 mL of pure pomegranate juice (n = 31) | Placebo (n = 31) | 18–70 years old, having at least three out of five components of metabolic syndrome | 51.6 ± 10.0 | High-sensitivity C-reactive protein (hs-CRP) ↓ Systolic blood pressure ↓ Diastolic blood pressure ↓ |
Ebrahimi-Mamaghani, Mehranghiz, et al. (2014) [24] | Single-blind, randomized, placebo-controlled, parallel | 8 weeks | Red onion 2 × 40–50 g/day for overweight/2 × 50–60 g/day for obese (n = 27) | 2 × 10–15 g/day (n = 27) | 17–37 years old, BMI between 25 and 40 kg/m2, low intake (< 93 g) of liliaceous vegetables | 26.6 ± 5.8 | Low-density lipoprotein (LDL) cholesterol ↓ Total cholesterol (TC) ↓ |
Dow, Caitlin A., et al. (2012) [25] | Randomized, placebo controlled, parallel | 6 weeks | Grapefruit with each meal (3 x daily) (n = 42) | Placebo (n = 32) | Overweight and obese men and premenopausal women | 41.2 ± 11.0 | Systolic blood pressure ↓ Low-density lipoprotein (LDL) cholesterol ↓ Total cholesterol (TC) ↓ |
The First Author (Publication Year) | Study Design | Duration | Intervention | Control | Participants | Mean Age | Main Outcome |
---|---|---|---|---|---|---|---|
Basu, Arpita, et al. (2011) [26] | Double-blind, randomized, placebo-controlled | 8 weeks | Cranberry juice (480 mL/day) (n = 36) | Placebo (480 mL/day) | Metabolic syndrome | 52.0 ± 8.0 | Plasma antioxidant capacity ↑ Oxidized-low-density lipoprotein (Ox-LDL) ↓ Malondialdehyde (MDA) ↓ |
Novotny, Janet A., et al. (2015) [27] | Double-blind, randomized, placebo-controlled, parallel | 8 weeks | Cranberry juice (240 mL) (n = 30) | Placebo (n = 30) | 25–65 years of age with a BMI between 20 and 38 kg/m2 | 50.6 ± 1.2 | Diastolic blood pressure ↓ Fasting plasma glucose ↓ |
Richter, Chesney K., et al. (2021) [28] | Double-blind, randomized, placebo-controlled, parallel | 12 weeks | Cranberry juice (500 mL/d) (n = 30) | Placebo juice (n = 30) | Middle-aged adults with overweight/obesity | 49.8 ± 1.3 | 24-h diastolic ambulatory blood pressure ↓ |
Aboo Bakkar, Zainie, et al. (2019) [29] | Double-blind, randomized, placebo-controlled, crossover | 4 weeks | 1.7 g freeze-dried cherry (235 mg/day anthocyanins) (n = 12) | Placebo (n = 12) | Nonsmokers, with no known history of disease | 52.8 ± 5.8 | Flow-mediated dilation (FMD) response ↑ Plasma nitrate and nitrite ↑ Plasma peroxiredoxin concentration ↑ |
Johnson, Sarah A., et al. (2020) [30] | Single-blind, randomized, placebo-controlled, parallel | 12 weeks | Cherry juice 240 mL (n = 9) | Isocaloric placebo-control drink (n = 10) | 20–60 years of age with MetS | 29.3 ± 1.1 (cherry) 44.2 ± 4.1 (control) | Total cholesterol ↓ Oxidized-low-density lipoprotein (Ox-LDL) ↓ Vascular cell adhesion protein 1 (VCAM-1) ↓ |
Kent, Katherine, et al. (2016) [31] | A pilot crossover study | acute | Cherry juice 100 mL × 3 (0, 1, 2 h) (n = 13) | Cherry juice 300 mL (0 h) (n = 13) | Young (18–35 years of age) and older adults (55 + years of age) | 21.8 ± 0.9 (young) 77.5 ± 6.2 (older) | Systolic blood pressure ↓ (cherry juice 300 mL) Diastolic blood pressure ↓ (cherry juice 300 mL) Heart rate ↓ (cherry juice 300 mL) |
Keane, Karen M., et al. (2016) [32] | Double-blind, randomized, placebo-controlled, crossover | acute | 60 mL dose of Cherry juice (n = 15) | Placebo (n = 15) | Early hypertension (systolic blood pressure (SBP) ≥ 130 mm Hg, diastolic blood pressure ≥80 mm Hg, or both) | 31.0 ± 9.0 | Systolic blood pressure ↓ |
Desai, Terun, Michael Roberts, and Lindsay Bottoms (2021) [33] | Single-blind, randomized, placebo-controlled, crossover | 7 days | Cherry juice (n = 12) | Placebo (n = 12) | Metabolic syndrome | 50.0 ± 10.0 | Systolic blood pressure ↓ Diastolic blood pressure ↓ Glucose ↓ Total cholesterol ↓Low-density lipoprotein (LDL)-cholesterol ↓ |
Basu, Arpita, et al. (2010) [34] | Randomized, placebo-controlled | 8 weeks | 2 cups strawberry beverage + 2 cups of water a day (50 g freeze-dried strawberries) (n = 12) | 4 cups of water a day (n = 15) | Metabolic syndrome | 47.0 ± 3.0 | Total cholesterol ↓ Low-density lipoprotein (LDL)-cholesterol ↓ Vascular cell adhesion protein 1 (VCAM-1) ↓ |
Basu, Arpita, et al. (2021) [35] | Double-blind, randomized, placebo-controlled, crossover | 14 weeks | 32 g strawberry powder/day (n = 33) | Placebo (n = 33) | Metabolic syndrome | 53.0 ± 10.0 | Insulin ↓ Lipid article profiles ↓ Serum PAI-1 ↓ |
The First Author (Publication Year) | Study Design | Duration | Intervention | Control | Participants | Mean Age | Main Outcome |
---|---|---|---|---|---|---|---|
Colmán-Martínez, Mariel, et al. (2017) [36] | An open, prospective, randomized, placebo-controlled, crossover | 4 weeks | Tomato juice (n = 28) | Water (n = 28) | High cardiovascular risk | 69.7 ± 3.1 | Intercellular adhesion molecule 1 (ICAM-1) ↓ Vascular cell adhesion protein 1 (VCAM-1) ↓ |
Ferro, Yvelise, et al. (2021) [37] | Crossover study | 6 weeks | Tomato sauce 150 mL/day (Carotenoids 3.5 mg/g) (n = 61) | Sterol-enriched yogurt (n = 91) | Between 30 and 45 years of age and BMIs between 19 and 22 kg/m2 | 54.0 ± 11.0 | Low-density lipoprotein (LDL)-cholesterol ↓ |
Wolak, Talia, et al. (2019) [38] | Double-blind, randomized, placebo-controlled | 8 weeks | Tomato nutrient complex (30 mg lycopene) (n = 12) | Placebo (n = 12) | Hypertensive subjects | 52.4 ± 8.2 | Systolic blood pressure ↓ |
Xaplanteris, Panagiotis, et al. (2012) [39] | Single-blind, randomized, placebo-controlled, crossover | 14 days | 70 g tomato paste (n = 19) | Placebo (n = 19) | Young, healthy volunteers | 39.0 ± 13.0 | Flow-mediated dilation (FMD) response ↑ |
Ghavipour, Mahsa, et al. (2013) [40] | Double-blind, randomized, placebo-controlled | 20 days | 330 mL/d of tomato juice (n = 53) | Water (n = 53) | Overweight and obese females | 23.3 ± 0.5 | TNF-α ↓ IL-8 ↓ |
Ellis, Amy C., et al. (2021) [41] | Double-blind, randomized, placebo-controlled, crossover | 4 weeks | Watermelon juice (n = 9) | Placebo (n = 8) | Postmenopausal women 55–70 years of age with BMI < 30 kg/m2 (non-obese) | 60.0 ± 4.3 | Serum glucose ↓ |
Lum, Tiffany, et al. (2019) [42] | Crossover | 4 weeks | Watermelon (2 cups) (n = 33) | Isocaloric low-fat cookies (n = 33) | 55–70 years of age with overweight or obese subjects | - | Systolic blood pressure ↓ |
Shanely, R. Andrew, et al. (2020) [43] | Randomized, placebo-controlled | 6 weeks | 710 mL of Watermelon/day (n = 26) | Placebo (n = 19) | 50–75 years of age with Overweight and obese postmenopausal women | 59.8 ± 0.87 | Soluble vascular cell adhesion molecule-1 ↓ |
The First Author (Publication Year) | Study Design | Duration | Intervention | Control | Participants | Mean Age | Main Outcome |
---|---|---|---|---|---|---|---|
Abubakar, Salisu M., et al. (2019) [44] | Single-blind, randomized, placebo-controlled, crossover | acute | 250 mL of the aqueous extract of hibiscus with a high-fat meal (n = 25) | Placebo (n = 25) | 1% to 10% cardiovascular disease risk in 10 years | 49.0 ± 2.0 | % FMD ↑ Serum glucose ↓ Plasma insulin ↓ Serum triacylglycerol ↓ C-reactive protein (CRP) ↓ |
Takemura, Shigeki, et al. (2014) [45] | Double-blind, randomized, placebo-controlled | 12 weeks | 800 mg plum capsule (4 capsule/day) (n = 15) | Placebo (n = 15) | Normal-high BP or hypertension level 1 | 43.3 ± 12.9 | Diastolic blood pressure ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-y.; Park, M.J.; Kim, J.Y. Physiological Effects of Red-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases. Appl. Sci. 2022, 12, 1786. https://doi.org/10.3390/app12041786
Park S-y, Park MJ, Kim JY. Physiological Effects of Red-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases. Applied Sciences. 2022; 12(4):1786. https://doi.org/10.3390/app12041786
Chicago/Turabian StylePark, Soo-yeon, Min Ju Park, and Ji Yeon Kim. 2022. "Physiological Effects of Red-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases" Applied Sciences 12, no. 4: 1786. https://doi.org/10.3390/app12041786
APA StylePark, S. -y., Park, M. J., & Kim, J. Y. (2022). Physiological Effects of Red-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases. Applied Sciences, 12(4), 1786. https://doi.org/10.3390/app12041786