Optimal Assistance Timing to Induce Voluntary Dorsiflexion Movements: A Preliminary Study in Healthy Participants
Abstract
:1. Introduction
2. Materials and Methods
2.1. The High-Dorsiflexion Assistive System
2.2. Identification of a Suitable Assistance Delay Time
3. Experiment
3.1. Participants
3.2. Experimental Design
- Simulated circumduction gait (SCG): The participants walked with the dorsiflexion-restricted AFO, and an extension spring was installed to restrict swing-phase dorsiflexion. Thus, they could simulate a circumduction gait.
- Assistance without delay (AST0): The participants walked with restricted dorsiflexion, and our high-dorsiflexion assistive system activated dorsiflexion assistance upon toe-off.
- Assistance with delay time of 0.5 y, y, 1.5 y ms (AST0.5y, ASTy, AST1.5y): The participants walked with restricted dorsiflexion, and the high-dorsiflexion assistive system activated after a 0.5 y, y, 1.5 y ms delay. The sequences of these three conditions were random for all participants.
3.3. Measurement and Evaluation
- RHEEL, LHEEL: Heels on both feet;
- RMT1, LMT1: First metatarsal bones in both feet;
- RMT5, LMT5: Fifth metatarsal bones in both feet;
- RTIB, LTIB: Middle of tibias of both legs;
- RFIB, LFIB: Middle of fibulas of both legs;
- RKNE, LKNE: Patellas of both legs;
- RTHI, LTHI: Middle of lateral thighs of both legs;
- RHIP, LHIP: Greater trochanter of both legs;
- RCRE, LCRE: Iliac crests of both sides;
- RASIS, LASIS: Anterior superior iliac spines of both sides;
- SACR: Sacrum.
3.4. Statistical Analysis
4. Results
4.1. The Physiological Result
4.2. The Kinematic Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stroke, Cerebrovascular Accident. Available online: http://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed on 11 January 2022).
- Krishnamurthi, R.V.; Ikeda, T.; Feigin, V.L. Global, regional and country-specific burden of ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage: A systematic analysis of the global burden of disease study 2017. Neuroepidemiology 2020, 54, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Bruni, M.F.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. J. Clin. Neurosci. 2018, 48, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Otter, A.; Geuruts, A.; Mulder, T.; Duysens, J. Abnormalities in the temporal patterin of lower extremity muscle activity in hemiparetic gait. Gait Posture 2007, 25, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Perera, C.K.; Gopalai, A.A.; Ahmad, S.A.; Gouwanda, D. Muscles affecting minimum toe clearance. Front. Public Health 2021, 9, 612064. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, F.; Mukaino, M.; Ohtsuka, K.; Tanikawa, H.; Tsuchiyama, K.; Teranishi, T.; Kanada, Y.; Kagaya, H.; Saitoh, E. Biomechanical factors behind toe clearance during the swing phase in hemiparetic patients. Top. Stroke Rehabil. 2017, 24, 177–182. [Google Scholar] [CrossRef]
- Gil-Castillo, J.; Alnajjar, F.; Koutsou, A.; Torricelli, D.; Moreno, J.C. Advances in neuroprosthetic management of foot drop: A review. J. Neuroeng. Rehabil. 2020, 17, 46. [Google Scholar] [CrossRef]
- Best, R.; Begg, R. A method for calculating the probability of tripping while walking. J. Biomech. 2008, 41, 1147–1151. [Google Scholar] [CrossRef]
- Balaban, B.; Tok, F. Gait disturbances in patients with stroke. PM&R 2014, 6, 635–642. [Google Scholar]
- Matsuda, F.; Mukaino, M.; Ohtsuka, K.; Tanikawa, H.; Tsuchiyama, K.; Teranishi, T.; Kanada, Y.; Kagaya, H.; Saitoh, E. Analysis of strategies used by hemiplegic stroke patients to achieve toe clearance. Jpn. J. Compr. Rehabil. Sci. 2016, 7, 111–118. [Google Scholar]
- Hussain, S.; Jamwal, P.K.; Vliet, P.V.; Brown, N.A.T. Robot assisted ankle neuro-rehabilitation: State of the art and future challenges. Expert Rev. Neurother. 2021, 21, 111–121. [Google Scholar] [CrossRef]
- Alnajjar, F.; Zaier, R.; Khalid, S.; Gochoo, M. Trends and technologies in rehabilitation of foot drop: A systematic review. Expert Rev. Med. Devices 2021, 18, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Oba, T.; Kadone, H.; Hassan, M.; Suzuki, K. Robotic ankle–foot orthosis with a variable viscosity link using MR fluid. IEEE ASME Trans. Mechatron. 2019, 24, 495–504. [Google Scholar] [CrossRef]
- Nakagawa, K.; Tomoi, M.; Higashi, K.; Utsumi, S.; Kawano, R.; Tanaka, E.; Kurisu, K.; Yuge, L. Short-term effect of a close-fitting type of walking assistive device on spinal cord reciprocal inhibition. J. Clin. Neurosci. 2020, 77, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Jamwal, P.K.; Hussain, S.; Ghayesh, M.H. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies. Proc. Inst. Mech. Eng. H 2020, 234, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Hidayah, R.; Bishop, L.; Jin, X.; Chamarthy, S.; Stein, J.; Agrawal, S.K. Gait adaptation using a cable-driven active leg exoskeleton (C-ALEX) with post-stroke participants. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1984–1993. [Google Scholar] [CrossRef]
- Van Kammen, K.; Boonstra, A.M.; van der Woude, L.H.V.; Visscher, C.; Reinders-Messelink, H.A.; den Otter, R. Lokomat guided gait in hemiparetic stroke patients: The effects of training parameters on muscle activity and temporal symmetry. Disabil. Rehabil. 2020, 42, 2977–2985. [Google Scholar] [CrossRef] [Green Version]
- Lotze, M.; Braun, C.; Birbaumer, N.; Anders, S.; Cohen, L.G. Motor learning elicited by voluntary drive. Brain 2003, 126, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Adiputra, D.; Nazmi, N.; Bahiuddin, I.; Ubaidillah, U.; Imaduddin, F.; Abdul Rahman, M.A.; Mazlan, S.A.; Zamzuri, H. A review on the control of the mechanical properties of ankle foot orthosis for gait assistance. Actuators 2019, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Forrester, L.W.; Roy, A.; Krebs, H.I.; Macko, R.F. Ankle training with a robotic device improves hemiparetic gait after a stroke. Neurorehabil. Neural Repair 2011, 25, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Chaparro-Rico, B.D.M.; Cafolla, D. Test-retest, inter-rater and intra-rater reliability for spatiotemporal gait parameters using SANE (an eaSy gAit aNalysis systEm) as measuring instrument. Appl. Sci. 2020, 10, 5781. [Google Scholar] [CrossRef]
- Chaparro-Rico, B.D.M.; Cafolla, D.; Tortola, P.; Galardi, G. Assessing stiffness, joint torque and ROM for paretic and non-paretic lower limbs during the subacute phase of stroke using lokomat tools. Appl. Sci. 2020, 10, 6168. [Google Scholar] [CrossRef]
- Roy, A.; Krebs, H.; Williams, D.; Bever, C.; Forrester, L.; Macko, R.; Hogan, N. Robot-aided nerorehabilitation: A novel robot for ankle rehabilitation. IEEE Trans. Robot. 2009, 25, 569–582. [Google Scholar] [CrossRef]
- Cruz, T.H.; Dhaher, Y.Y. Impact of ankle-foot orthosis on frontal plane behaviors post-stroke. Gait Posture 2009, 30, 312–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.C.; Cheng, H.; Yasuda, K.; Ohashi, H.; Iwata, H. Effects of assisted dorsiflexion timing on voluntary efforts and compensatory movements: A feasibility study in healthy participants. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2222–2231. [Google Scholar] [CrossRef]
- Hong, J.-C.; Suzuki, S.; Fukushima, Y.; Yasuda, K.; Ohashi, H.; Iwata, H. Development of high-dorsiflexion assistive robotic technology for gait rehabilitation. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 3801–3806. [Google Scholar]
- Hong, J.-C.; Cheng, H.; Hayashi, Y.; Yasuda, K.; Ohashi, H.; Iwata, H. Evaluation of the effect of high-dorsiflexion assistive robotic technology on voluntary ankle movement. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; pp. 25–29. [Google Scholar]
- Tanaka, E.; Muramatsu, K.; Watanuki, K.; Saegusa, S.; Yuge, L. Walking assistance apparatus enabled for neuro-rehabilitation of patients and its effectiveness. Mech. Eng. Lett. 2015, 1, 00530. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.-C.; Tanaka, G.; Yasuda, K.; Ohashi, H.; Iwata, H. Identifying spring coefficient for assisting hemiplegic Patient’s heel rocker function: A feasibility study. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 738–743. [Google Scholar]
- Hayashi, Y.; Yasuda, K.; Kitaji, K.; Harashima, H.; Iwata, H. A haptic-based perception-empathy biofeedback device that supplements foot pressure pattern during gait in stroke patients. In Proceedings of the 2019 IEEE/SICE International Symposium on System Integration (SII), Paris, France, 14–16 January 2019; pp. 124–128. [Google Scholar]
- Yasuda, K.; Saichi, K.; Kaibuki, N.; Harashima, H.; Iwata, H. Haptic-based perception-empathy biofeedback system for balance rehabilitation in patients with chronic stroke: Concepts and initial feasibility study. Gait Posture 2018, 62, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, K.; Hayashi, Y.; Tawara, A.; Iwata, H. Development of a vibratory cueing system using an implicit method to increase walking speed in patients with stroke: A proof-of-concept study. ROBOMECH J. 2020, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Ling, J.; Yasuda, K.; Hayashi, Y.; Imamura, S.; Iwata, H. Development of a vibrotactile cueing device that implicitly increases walking speed during gait training in stroke patients: An observational case series study. J. Med. Eng. Technol. 2021, 46, 1–7. [Google Scholar] [CrossRef]
- Donath, L.; Faude, O.; Lichtenstein, E.; Nüesch, C.; Mündermann, A. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: Comparison to an instrumented treadmill. J. Neuroeng. Rehabil. 2016, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Moreira, L.; Figueiredo, J.; Fonseca, P.; Vilas-Boas, J.P.; Santos, C.P. Lower limb kinematic, kinetic, and EMG data from young healthy humans during walking at controlled speeds. Sci. Data 2021, 8, 103. [Google Scholar] [CrossRef]
- Farfán, F.D.; Politti, J.D.; Felice, C.J. Evaluation of EMG processing techniques using information theory. Biomed. Eng. Online 2010, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekiguchi, Y.; Owaki, D.; Honda, K.; Fukushi, K.; Hiroi, N.; Nozaki, T.; Izumi, S.I. Ankle–foot orthosis with dorsiflexion resistance using spring-cam mechanism increases knee flexion in the swing phase during walking in stroke patients with hemiplegia. Gait Posture 2020, 81, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Totah, D.; Menon, M.; Jones-Hershinow, C.; Barton, K.; Gates, D.H. The impact of ankle-foot orthosis stiffness on gait: A systematic literature review. Gait Posture 2019, 69, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Burnfield, J. Gait Analysis: Normal and Pathological Function, 2nd ed.; SLACK Incorporated: West Deptford, NJ, USA, 2010. [Google Scholar]
- Chae, C.S.; Jun, J.H.; Im, S.; Jang, Y.Y.; Park, G.Y. Effectiveness of hydrotherapy on balance and paretic knee strength in patients with stroke. Am. J. Phys. Med. Rehabil. 2020, 99, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Dubey, L.; Karthikbabu, S.; Mohan, D. Effects of pelvic stability training on movement control, hip muscles strength, walking speed and daily activities after stroke: A randomized controlled trial. Ann. Neurosci. 2018, 25, 80–89. [Google Scholar] [CrossRef]
- Gittins, M.; Lugo-Palacios, D.; Vail, A.; Bowen, A.; Paley, L.; Bray, B.; Tyson, S. Stroke impairment categories: A new way to classify the effects of stroke based on stroke-related impairments. Clin. Rehabil. 2021, 35, 446–458. [Google Scholar] [CrossRef]
- Pumpa, L.U.; Cahill, L.S.; Carey, L.M. Somatosensory assessment and treatment after stroke: An evidence-practice gap. Aust. Occup. Ther. J. 2015, 62, 93–104. [Google Scholar] [CrossRef]
Explanatory Variable | Coefficient | Significance Judgment 1 | VIF 2 |
---|---|---|---|
−0.0925 | * | 1.087 | |
57.407 | * | 1.062 | |
874.31 | * | 2.728 | |
−173.38 | 2.755 | ||
constant | 56.643 | - | - |
Explanatory Variable | Coefficient | Significance Judgment 1 | VIF 2 |
---|---|---|---|
−0.089 | * | 1.087 | |
58.87 | * | 1.062 | |
711.811 | * | 2.728 | |
constant | 42.031 | - | - |
Patient | Suitable Delay Time (ms) | Predicted Delay Time (ms) | Error (ms) |
---|---|---|---|
A | 88.16 | 85.94 | −2.22 (−2.52%) |
B | 123.36 | 125.17 | 1.81 (1.47%) |
C | 98.56 | 95.59 | −2.97 (−3.01%) |
D | 101.32 | 98.15 | −3.17 (3.13%) |
E | 98.00 | 100.05 | 2.05 (2.09%) |
Participant | Gender | Age (Years) | Height (cm) | Weight (kg) |
---|---|---|---|---|
A | Male | 26 | 170 | 70 |
B | Female | 24 | 163 | 53 |
C | Male | 24 | 172 | 102 |
D | Female | 23 | 166.5 | 50.5 |
E | Male | 25 | 175 | 100 |
F | Male | 32 | 172 | 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.-C.; Yasuda, K.; Ohashi, H.; Iwata, H. Optimal Assistance Timing to Induce Voluntary Dorsiflexion Movements: A Preliminary Study in Healthy Participants. Appl. Sci. 2022, 12, 2248. https://doi.org/10.3390/app12042248
Hong J-C, Yasuda K, Ohashi H, Iwata H. Optimal Assistance Timing to Induce Voluntary Dorsiflexion Movements: A Preliminary Study in Healthy Participants. Applied Sciences. 2022; 12(4):2248. https://doi.org/10.3390/app12042248
Chicago/Turabian StyleHong, Jing-Chen, Kazuhiro Yasuda, Hiroki Ohashi, and Hiroyasu Iwata. 2022. "Optimal Assistance Timing to Induce Voluntary Dorsiflexion Movements: A Preliminary Study in Healthy Participants" Applied Sciences 12, no. 4: 2248. https://doi.org/10.3390/app12042248
APA StyleHong, J. -C., Yasuda, K., Ohashi, H., & Iwata, H. (2022). Optimal Assistance Timing to Induce Voluntary Dorsiflexion Movements: A Preliminary Study in Healthy Participants. Applied Sciences, 12(4), 2248. https://doi.org/10.3390/app12042248