Human-Robot Interaction Torque Estimation Methods for a Lower Limb Rehabilitation Robotic System with Uncertainties
Abstract
:1. Introduction
- We defined a list of 18 requirements of a human–robot torque estimation method for an LLRR, usable for isotonic. We defined the requirements with a literature review and a survey-based methodology.
- This paper proposes two human–robot interaction torque estimation methods, the IID and INDO. Both methods must cope with two challenging issues: (a) BSIPs uncertainties exist in the subject model, and (b) no force or additional sensors are to be used. Both methods do not require a physiotherapist to make an exact measurement of the BSIPs of the patient’s limbs, but uses approximate values computed in terms of total height and body weight. Finally, the methods would take the data from the first iterations to reduce the sensitivity to BSIPs uncertainties.
- Our proposal avoids the bidirectional coupling between identifier, estimator, and controller to guarantee convergence in each stage separately. For this purpose, the robot performs a persistent excitation trajectory to identify the parameters. The optimized trajectory may be used for any given patient regardless of their BSIPs. Then, we turn off the parameter identifier in a second phase, and the robot executes the rehabilitation therapy movements, estimating the torque exerted by the subject.
2. Requirements Definition
- Low phase lag in the estimation [15].
- Low sensor noise sensitivity [15].
- Low sensitivity to BSIPs uncertainties [12].
- The average percentage error must be lower than 20 to 22% when using accurate model parameters [12].
- Small error band [10].
- Approximately 0.5 s of settling time or lower [10].
- Overshoot of approximately 25% or lower within the estimation [10].
- Coefficient of Correlation greater or approximately 0.935 for the hip joint and 0.924 for the knee joint [11].
- Root Mean Squared Percent Error (RMSPE) lower than 8.74% for the hip joint and 10.26% for the knee joint [11].
- A maximum of 5% error when moving just one joint, i.e., the distal one [28].
- Finite-time convergence [29].
- It should not require calibration each time that the user wears the LLRR, i.e., it requires a maximum of one calibration per user. [13].
- It works in all ROM, and the limiting angles of the joints must be configurable.
- It works with slow exercises, executing between 1–25 repetitions per set.
- It works within the following ranges of forces: 0 kg to 15 kg for the hip, 0 kg to 15 kg for the knee, and 0 kg to 10 kg for the ankle.
- It works having a maximum percentage of error in the range from 1% to 3%.
- It works within a squat exercise.
3. Dynamic Model
4. Original ID-Based and NDO-Based Methods
5. Proposed Methods
5.1. Transforming the Model
5.2. Calibration Phase Design
- is the integral of .
- and are, respectively, the estimates of the vectors and .
- is a bounded symmetric positive definite matrix.
- is a positive gain.
- The vector is measurable.
- satisfies the persistent excitation condition [39].
- is a constant vector.
5.3. Estimation Phase Design
- Calibration phase
- Torque estimation phase
- Calibration phase
- Torque estimation phase
- The matrixis invertible,
- There exists a positive definite and symmetric matrix Γ such that
- The rate of change of the lumped disturbance is bounded, i.e.,such thatfor all.
6. Simulation Results
6.1. Simulation Parameters
6.2. Control Algorithm
6.3. Calibration Phase Results
6.4. Estimation Phase Results
6.5. Requirements Evaluation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAS | Australian Academy of Science |
AI | Artifficial Intelligence |
APM | Antipersonnel mines |
BSIPs | Body Segment Inertial Parameters |
CAD | Computer Assisted Design |
CoM | Center of Mass |
COVID-19 | Coronavirus disease 2019 |
CTC | Computed torque control |
D-H | Denavit Hartenberg |
DOF | Degrees of freedom |
DP | Dorsi/plantar |
ESMAD | Mobile Anti-Disturbances Squadron |
FE | Flexion/extension |
GA | Genetic Algorithm |
GRF | Ground Reaction Force |
IED | Improvised explosive devices |
ID | Inverse Dynamics |
IID | Identified Inverse Dynamics |
INDO | Identified Nonlinear Disturbance Observer |
KE | Kinetic Energy |
KINA | Virtual Reality System for Lower Limb Rehabilitation of APM or IED Victims |
LegSys | Old name for the lower limb rehabilitation robot |
LLRR | Lower Limb Rehabilitation |
LMI | Linear Matrix Inequality |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
Minciencias | Ministerio de Ciencias, Tecnología e Innovación de Colombia |
NDO | Nonlinear Disturbance Observer |
Nukawa | Current name for the lower limb rehabilitation robot system |
PE | Potential Energy |
Coefficient of Correlation | |
ROM | Range of Motion |
RMSE | Root Mean Square Error |
RMSPE | Root Mean Square Percentage Error |
sEMG | Surface Electromyography |
SDGS | Sustainable Development Goals |
SNR | Signal-to-noise Ratio |
UdeM | Universidad de Medellín |
UPB | Universidad Pontificia Bolivariana |
UNAM | Universidad Nacional Autónoma de México |
UXO | Unexploded Ordnance |
WGN | White Gaussian Noise |
WHO | World Health Organization |
Appendix A. Nukawa
Appendix B. Physiotherapist Surveys
Questions |
---|
1. How are performed Isotonic exercises for the rehabilitation of antipersonnel mines (APM), improvised explosive devices (IED), and unexploded ordnance (UXO)? |
2. List, in order of importance, five isotonic exercises necessary for lower limb rehabilitation in people victims of APM, IED, and UXO. |
3. Which segmental speeds are used in isotonic exercises to rehabilitate lower limbs in people victims of APM, IED, and UXO? |
4. In a rehabilitation process for APM, IED, and UXO victims, what are the ranges of force, in pounds or kilograms, during the exercises? |
5. What would be the maximum percentage of error allowed in a device for the automatic estimation of the force performed by the subject during the execution of a motor activity? |
6. Optional question: considering the following case study of an amputee, write in the table an example of a protocol that you would use in the rehabilitation of the IED victim, including five (5) isotonic exercises for lower limb rehabilitation. Define the ranges of motion used in each exercise, the speeds (reps per minute), and the force range (in kg or pounds) performed at each joint. Case study of a person amputated by IED: male patient, 30 years old, weighing 75 , 175 tall; with right transfemoral amputation (the distal third of the knee), a stump with 18 length from the perineum to the femur section. A user without vascular problems and with good soft tissue healing. The amputation was caused by exposure to an improvised explosive device during his activities as part of the ESMAD (Command of special operational units) during the control of disturbances and blockades in the rural area of Florencia Caquetá. As a consequence of the blast wave, the patient lost the hearing capacity of the right ear (sensory hearing loss), additionally to the amputation. He is currently undergoing gait rehabilitation and uses an Ottobock 3R80 hydraulic knee prosthesis as a device. |
- Exercises that could not be executed by our LLRR.
- Exercises with ROM, speed, or forces without quantitative quantities.
- Repeated exercises.
- Exercises with incomplete information.
- ROM—Hip 90° and Knee 90°;
- Speed—20 repetitions in 4 min;
- Force—2 lb () at hip, 2 lb () at knee, 0 lb () at ankle.
Appendix C. Dynamic Model
Appendix D. Transformed Model
References
- World Health Organization. World Report on Disability; Technical Report; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- United Nations Development Programme. UNDP Support to the Implementation of Sustainable Development Goal 1: Poverty Reduction; Technical Report; United Nations Development Programme: New York, NY, USA, 2016. [Google Scholar]
- Departamento Administrativo Nacional de Estadística. Defunción por Grupo de Edad, Sexo, Segœn Departamento, Municipio y área de Residencia; Departamento Administrativo Nacional de Estadística: Bogotá, Colombia, 2014.
- Eurostat. Disability Statistics—Prevalence and Demographics; Technical Report; European Union: Maastricht, The Netherlands, 2014.
- Organización Panamericana de la Salud. Aplicacion de la Clasificación Internacional del Funcionamiento, de la Discapacidad y de la Salud en Estudios de Prevalencia de Discapacidad en las Américas; Technical Report; Organización Panamericana de la Salud: Washington, DC, USA, 2012. [Google Scholar]
- Almeras, D.; Milosavljevic, V. Informe regional sobre la medición de la discapacidad. Una mirada a los procedimientos de medición de la discapacidad en América Latina y el Caribe; Comisión Económica para América Latina y el Caribe: Santiago, Chile, 2014; Volume 3860, p. 48. [Google Scholar]
- Departamento Nacional de Planeación. Bases del Plan Nacional de Desarrollo 2018–2022; Technical Report; Departamento Nacional de Planeación: Bogotá, Colombia, 2019.
- Descontamina Colombia. Víctimas de Minas Antipersonal y Municiones sin Explosionar; Descontamina Colombia: Bogotá, Colombia, 2019.
- Dollar, A.M.; Herr, H. Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans. Robot. 2008, 24, 144–158. [Google Scholar] [CrossRef]
- Choi, J.H.; Kwak, J.H.; An, J.; Oh, S. Force Sensorless Multi-functional Impedance Control for Rehabilitation Robot. IFAC-PapersOnLine 2017, 50, 12077–12082. [Google Scholar] [CrossRef]
- Hwang, B.; Jeon, D. A method to accurately estimate the muscular torques of human wearing exoskeletons by Torque sensors. Sensors 2015, 15, 8337–8357. [Google Scholar] [CrossRef] [PubMed]
- Saadatzi, M.; Long, D.C.; Celik, O. Comparison of Human-Robot Interaction Torque Estimation Methods in a Wrist Rehabilitation Exoskeleton. J. Intell. Robot. Syst. 2018, 10, 1–17. [Google Scholar] [CrossRef]
- Kong, K.; Jeon, D. Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans. Mechatron. 2006, 11, 428–432. [Google Scholar] [CrossRef]
- Wang, X.; Chen, F.; Zha, F.; Qiu, S.; Li, M.; Deng, J. Towards Online Estimation of Human Joint Muscular Torque with a Lower Limb Exoskeleton Robot. Appl. Sci. 2018, 8, 1610. [Google Scholar] [CrossRef] [Green Version]
- Grun, M.; Konigorski, U. Observer Based Method for Joint Torque Estimation in Active Orthoses. IFAC Proc. Vol. 2012, 45, 199–204. [Google Scholar] [CrossRef]
- Hayashi, T.; Kawamoto, H.; Sankai, Y. Control method of robot suit HAL working as operator’s muscle using biological and dynamical information. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; Volume 2, pp. 3455–3460. [Google Scholar] [CrossRef]
- Anwar, T.; Al-Dmour, H. RBF based adaptive neuro-fuzzy inference system to torque estimation from EMG signal. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–8. [Google Scholar]
- Heine, C.B.; Menegaldo, L.L. Numerical validation of a subject-specific parameter identification approach of a quadriceps femoris EMG-driven model. Med Eng. Phys. 2018, 53, 66–74. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, X.; Gutierrez Farewik, E.; Wang, R. Estimation of ankle dynamic joint torque by a neuromusculoskeletal solver-informed NN model. In Proceedings of the 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics, ICARM 2021, Chongqing, China, 3–5 July 2021; pp. 75–80. [Google Scholar] [CrossRef]
- Aljuboury, A.S.; Hameed, A.H.; Ajel, A.R.; Humaidi, A.J.; Alkhayyat, A.; Mhdawi, A.K.A. Robust Adaptive Control of Knee Exoskeleton-Assistant System Based on Nonlinear Disturbance Observer. Actuators 2022, 11, 78. [Google Scholar] [CrossRef]
- Saadatzi, M.; Long, D.C.; Celik, O. Torque estimation in a wrist rehabilitation robot using a nonlinear disturbance observer. In Proceedings of the ASME 2015 Dynamic Systems and Control Conference, Columbus, OH, USA, 28 October 2015. [Google Scholar]
- Kong, K.; Moon, H.; Hwang, B.; Jeon, D.; Tomizuka, M. Robotic rehabilitation treatments: Realization of aquatic therapy effects in exoskeleton systems. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; Volume 1, pp. 1923–1928. [Google Scholar] [CrossRef]
- Brahmi, B.; Saad, M.; Ochoa-Luna, C.; Rahman, M.H. Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 1369–1374. [Google Scholar] [CrossRef]
- Fahmy, A.A.; Abdel Ghany, A.M. Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications. Ain Shams Eng. J. 2013, 4, 805–829. [Google Scholar] [CrossRef] [Green Version]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; p. 277. [Google Scholar] [CrossRef]
- Plagenhoef, S.; Evans, F.G.; Abdelnour, T. Anatomical Data for Analyzing Human Motion. Res. Q. Exerc. Sport 1983, 54, 169–178. [Google Scholar] [CrossRef]
- De Leva, P. Adjustments to zatsiorsky-seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef]
- Barkan, U.; Masayoshi, N.; Kazuyuki, H.; Michihiro, K.; Tatsuo, N. Proof of Concept for Robot-Aided Upper Limb Rehabilitation Using Disturbance Observers. IEEE Trans. Hum.-Mach. Syst. 2015, 45, 110–118. [Google Scholar]
- Mohammed, S.; Huo, W.; Huang, J.; Rifaï, H.; Amirat, Y. Nonlinear disturbance observer based sliding mode control of a human-driven knee joint orthosis. Robot. Auton. Syst. 2014, 75, 41–49. [Google Scholar] [CrossRef]
- Bruno, S.; Lorenzo, S.; Luigi, V.; Giuseppe, O. Kinematics BT-Robotics: Modelling, Planning and Control; Springer: London, UK, 2009; pp. 39–103. [Google Scholar]
- Fu, K.; Gonzalez, R.; Lee, C. Robotics: Control, Sensing, Vision and Intelligence; McGraw-Hill: New York, NY, USA, 1987; p. 1. [Google Scholar]
- Lewis, F.L.; Dawson, D.M.; Abdallah, C.T. Robot Manipulator Control Theory and Practice; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Denavit, J.; Hartenberg, R.S. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. J. Appl. Mech. 1955, 22, 215–221. [Google Scholar] [CrossRef]
- Mohammadi, A.; Tavakoli, M.; Marquez, H.J.; Hashemzadeh, F. Nonlinear disturbance observer design for robotic manipulators. Control Eng. Pract. 2013, 21, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.H.; Ballance, D.J.; Gawthrop, P.J.; O’Reilly, J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 2000, 47, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Riani, A.; Madani, T.; Hadri, A.E.; Benallegue, A. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 695–701. [Google Scholar] [CrossRef]
- Khalil, W.; Dombre, E. Modeling, Identification and Control of Robots; Butterworth-Heinemann: Oxford, UK, 2004; pp. 1–480. [Google Scholar] [CrossRef]
- Gautier, M.; Khalil, W. Direct Calculation of minimum set of inertial Parameters of Serial Robots. IEEE Trans. Robot. Autom. 1990, 6, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Shimkin, N.; Feuer, A.F. Persistency of excitation in continuous-time systems. Syst. Control Lett. 1987, 9, 225–233. [Google Scholar] [CrossRef]
- Nancy Berryman, W.D.B.P. Joint Range of Motion and Muscle Length Testing, 1st ed.; Saunders: Philadelphia, PA, USA, 2002. [Google Scholar]
- Serway, R.A.; Jewett, J.W.; Peroomian, V. Physics for Scientists and Engineers; Saunders: Philadelphia, PA, USA, 2018. [Google Scholar]
- Yepes, J.C.; Saldarriaga, A.J.; Vélez, J.M.; Pérez, V.Z.; Betancur, M.J. A Hardware-in-the-loop Simulation Study of a Mechatronic System for Anterior Cruciate Ligament Injuries Rehabilitation. In Proceedings of the BIODEVICES 2017—10th International Conference on Biomedical Electronics and Devices, Porto, Portugal, 21–23 February 2017; Volume 1. [Google Scholar]
- Yepes, J.C. Surface Electromyography Signal Processing Algorithm and Movement Control Algorithm for Mechatronic-Assisted Rehabilitation of Anterior Cruciate Ligament Injuries. Ph.D. Thesis, Universidad Pontificia Bolivariana, Medellin, Colombia, 2018. [Google Scholar] [CrossRef]
- Landau, I.D.; Lozano, R.; M’Saad, M.; Karimi, A. Discrete-Time System Models for Control; Springer: London, UK, 2011; pp. 35–53. [Google Scholar] [CrossRef]
- Vakanski, A.; Jun, H.P.; Paul, D.; Baker, R. A Data Set of Human Body Movements for Physical Rehabilitation Exercises. Data 2018, 3, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patiño, J.G.; Bravo, E.E.; Perez, J.J.; Perez, V. Lower Limb Rehabilitation System Controlled by Robotics, Electromyography Surface and Functional Electrical Stimulation; Pan American Health Care Exchanges, PAHCE: Medellin, Colombia, 2013; p. 6257. [Google Scholar] [CrossRef]
- Kirby, F.A. Simulación de los Algoritmos de Control de un Sistema de Rehabilitación de Miembro Inferiro (LegSys). Master’s Thesis, Universidad Pontificia Bolivariana, Medellin, Colombia, 2016. [Google Scholar]
- Bustamante, S.; Yepes, J.C.; Pérez, V.Z.; Correa, J.C.; Betancur, M.J. Online Simulation of Mechatronic Neural Interface Systems: Two Case-Studies. In Proceedings of the Biomedical Engineering Systems and Technologies: 9th International Joint Conference, BIOSTEC 2016, Rome, Italy, 21–23 February 2016; Revised Selected Papers. Springer International Publishing: Cham, Switzerland, 2017; pp. 255–275. [Google Scholar] [CrossRef]
- Zoss, A.B.; Kazerooni, H.; Chu, A. Biomechanical Design of the Berkeley Lower Extremity Exoskeletong (BLEEX). IEEE/ASME Trans. Mechatron. 2006, 11, 128–138. [Google Scholar] [CrossRef]
- Vaquero, A.F.; Chicharro, J.L. Fisiología del Ejercicio. In Fisiología del Ejercicio; Editorial Médica Panamericana: Bogotá, Colombia, 2006; p. 987. [Google Scholar]
i | ||||
---|---|---|---|---|
1 | 0 | 0 | ||
2 | 0 | 0 | ||
3 | 0 | 0 |
Parameter | Description | Value | Units |
---|---|---|---|
Thigh length | |||
Shank length | |||
Foot length | |||
Robot’s link 1 length | 0.4209 | ||
Robot’s link 2 length | 0.4349 | ||
Robot’s link 3 length | 0.2301 | ||
Robot + Subject’s link 1 length | 0.4209 | ||
Robot + Subject’s link 2 length | 0.4349 | ||
Robot + Subject’s link 3 length | 0.2301 | ||
Thigh weight | |||
Shank weight | |||
Foot weight | |||
Robot’s link 1 weight | 19 | ||
Robot’s link 2 weight | 9 | ||
Robot’s link 3 weight | 11 | ||
Robot + Subject’s weight of link 1 | 29.8525 | ||
Robot + Subject’s weight of link 2 | 12.4275 | ||
Robot + Subject’s weight of link 3 | 11.9975 | ||
Robot + Subject’s CoM of link 1 | |||
Robot + Subject’s CoM of link 2 | |||
Robot + Subject’s CoM of link 3 | |||
Robot + Subject’s Inertia of link 1 | |||
Robot + Subject’s Inertia of link 2 | |||
Robot + Subject’s Inertia of link 3 | |||
Viscous Friction in hip joint | 100 | ||
Viscous Friction in knee joint | 100 | ||
Viscous Friction in ankle joint | 60 | ||
Gravity | 9.8 | ||
Proportional gain | 150 | ||
Integral time | 0 | ||
Derivative time | 0.1 | ||
Motor 1 saturation | 768.458 | ||
Motor 2 saturation | 371.377 | ||
Motor 3 saturation | 102.689 |
Method | Error (Hip, Knee, Ankle) | ||||
---|---|---|---|---|---|
MAE | MAPE (%) | RMSE | RMSPE (%) | ||
Saadatzi et al. [12] ID | (73.0, 22.2, 6.67) | (1192, 362, ∼) | (312, 128, 6.75) | (5105, 2095, ∼) | (6.64 × 10−5, 0.002, ∼) |
IID | (37.9, 15.9, 0.468) | (618, 260, ∼) | (243, 100, 0.691) | (3973, 1634, ∼) | (3.74 × 10−4, 0.002, ∼) |
Saadatzi et al. [12] NDO | (31.3, 4.99, 6.65) | (512, 81.4, ∼) | (33.7, 5.47, 6.77) | (550, 89.3, ∼) | (0.047, 0.855, ∼) |
INDO | (1.04, 0.953, 0.814) | (16.9, 15.5, ∼) | (1.34, 1.22,1.02) | (21.8, 19.9, ∼) | (0.931, 0.939, ∼) |
Method | Error (Hip, Knee, Ankle) | ||||
---|---|---|---|---|---|
MAE | MAPE (%) | RMSE | RMSPE (%) | ||
Saadatzi et al. [12] ID | (40.9, 21.3, 6.59) | (696, 361, ∼) | (153, 73.2, 17.2) | (616, 1246, ∼) | (0.004, 0.004, ∼) |
IID | (21.3, 9.90, 2.03) | (362, 168, ∼) | (117, 55.2, 11.8) | (1998, 939, ∼) | (0.002, 0.007, ∼) |
Saadatzi et al. [12] NDO | (21.2, 12.2, 4.60) | (360, 207, ∼) | (26.1, 12.2, 4.65) | (444, 208, ∼) | (0.226, 0.931, ∼) |
INDO | (0.718, 0.609, 0.521) | (12.2, 10.4, ∼) | (0.993, 0.803, 0.650) | (16.9, 13.6, ∼) | (0.959, 0.973, ∼) |
Item | Requirement | Inspired by | (Saadatzi et al., 2018) ID Method | IID | (Saadatzi et al., 2018) NDO Method | INDO |
---|---|---|---|---|---|---|
1 | Non-dependence of additional sensors | [11,13] | ✓ | ✓ | ✓ | ✓ |
2 | Low phase lag in the estimation | [15] | ✗ | ✓ | ✗ | ✓ |
3 | Low sensor noise sensitivity | [15] | ✗ | ✗ | ✓ | ✓ |
4 | Low sensitivity to BSIPs uncertainties | [12] | ✗ | ✓ | ✗ | ✓ |
5 | The average percentage error must be lower than 20 to 22% when using accurate model parameters | [12] | ✓ | ✓ | ✓ | ✓ |
6 | Small error band | [10] | ✗ | ✓ | ✗ | ✓ |
7 | Approximately 0.5 s of settling time or lower | [10] | ✗ | ✓ | ✗ | ✓ |
8 | Overshoot of approximately 25% or lower within the estimation | [10] | ✓ | ✓ | ✓ | ✓ |
9 | greater or approximately 0.935 for the hip joint and 0.924 for the knee joint | [11] | ✗ | ✗ | ✗ | ✓ |
10 | %RMSE lower than 8.74% for the hip joint and 10.26% for the knee joint | [11] | ✗ | ✗ | ✗ | ✗ |
11 | A maximum of 5% error when moving just one joint, i.e., the distal one | [28] | ✗ | ✗ | ✗ | ✓ |
12 | Finite-time convergence | [29] | ✗ | ✓ | ✗ | ✓ |
13 | Should not require calibration each time that the user wears the LLRR, i.e., it requires a maximum of one calibration per user. | [13] | ✓ | ✓ | ✓ | ✓ |
14 | It works in all ROM, and the limiting angles of the joints must be configurable | Figure A2a | ✓ | ✓ | ✓ | ✓ |
15 | It works with slow exercises, executing between 1–25 repetitions per set | Figure A2b | ✗ | ✓ | ✗ | ✓ |
16 | It works with the following ranges of forces: to for the hip, to for the knee, and to for the ankle. | Figure A2c | ✗ | ✓ | ✗ | ✓ |
17 | It works having a maximum percentage of error in the range from 1% to 3% | Figure A2d | ✗ | ✗ | ✗ | ✗ |
18 | It works within a squat exercise | Case Study | ✗ | ✓ | ✗ | ✓ |
Total passed | 5 (27.8%) | 13 (72.2%) | 6 (33.3%) | 16 (88.9%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yepes, J.C.; Rúa, S.; Osorio, M.; Pérez, V.Z.; Moreno, J.A.; Al-Jumaily, A.; Betancur, M.J. Human-Robot Interaction Torque Estimation Methods for a Lower Limb Rehabilitation Robotic System with Uncertainties. Appl. Sci. 2022, 12, 5529. https://doi.org/10.3390/app12115529
Yepes JC, Rúa S, Osorio M, Pérez VZ, Moreno JA, Al-Jumaily A, Betancur MJ. Human-Robot Interaction Torque Estimation Methods for a Lower Limb Rehabilitation Robotic System with Uncertainties. Applied Sciences. 2022; 12(11):5529. https://doi.org/10.3390/app12115529
Chicago/Turabian StyleYepes, Juan C., Santiago Rúa, Marisol Osorio, Vera Z. Pérez, Jaime A. Moreno, Adel Al-Jumaily, and Manuel J. Betancur. 2022. "Human-Robot Interaction Torque Estimation Methods for a Lower Limb Rehabilitation Robotic System with Uncertainties" Applied Sciences 12, no. 11: 5529. https://doi.org/10.3390/app12115529
APA StyleYepes, J. C., Rúa, S., Osorio, M., Pérez, V. Z., Moreno, J. A., Al-Jumaily, A., & Betancur, M. J. (2022). Human-Robot Interaction Torque Estimation Methods for a Lower Limb Rehabilitation Robotic System with Uncertainties. Applied Sciences, 12(11), 5529. https://doi.org/10.3390/app12115529