Effect of Ultrasonic Vibration on the Surface Adhesive Characteristic of Iced Aluminum Alloy Plate
Abstract
:1. Introduction
2. Simulation of the Location of Vibration Source
3. Effect of PZT Patch Size on Shear Stress
3.1. The Effect of Side Length
3.2. The Effect of Thickness
4. Experiment on the Adhesive Force of Ice
4.1. Experimental Scheme
4.2. Experimental System
4.3. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dalili, N.; Edrisy, A.; Carriveau, R. A review of surface engineering issues critical to wind turbine performance. Renew. Energy 2009, 13, 428–438. [Google Scholar] [CrossRef]
- Bose, N. Icing on a small horizontal axis wind turbine part 1: Glaze ice profile. J. Wind Eng. Ind. Aerodyn. 1992, 45, 75–85. [Google Scholar] [CrossRef]
- Malhotra, S. Design considerations for offshore wind turbine foundations in the United States. In Proceedings of the International Offshore and Polar Engineering Conference, Osaka, Japan, 21–26 July 2009. [Google Scholar]
- Pan, J.; Loth, E.; Bragg, M. RANS simulations of airfoils with ice shapes. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit AIAA, Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Gent, R.W.; Dart, N.P.; Cansdale, J.T. Aircraft icing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2000, 358, 2873–2911. [Google Scholar] [CrossRef]
- Li, Y.; Sun, C.; Jiang, Y. Scaling method of the rotating blade of a wind turbine for a rime ice wind tunnel test. Energies 2019, 12, 627. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.F.; Shen, H.; Li, Y. Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine. Renew. Energy 2021, 179, 116–132. [Google Scholar] [CrossRef]
- Guo, W.F.; Zhang, Y.W.; Li, Y. A Wind Tunnel Experimental Study on the Icing Characteristics of a Cylinder Rotating around a Vertical Axis. Appl. Sci. 2021, 11, 10383. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, J.; Yin, J. Numerical simulation of three-dimensional ice accretion on an aircraft wing. Int. J. Heat Mass Transf. 2016, 92, 34–54. [Google Scholar] [CrossRef]
- Cao, Y.; Hou, S. Extension to the Myers Model for Calculation of Three-Dimensional Glaze Icing. J. Aircr. 2015, 8, 106–116. [Google Scholar] [CrossRef]
- Thomas, S.K.; Cassoni, R.P.; Macarthur, C.D. Aircraft anti-icing and de-icing techniques and modeling. J. Aircr. 1996, 33, 841–854. [Google Scholar] [CrossRef]
- Martin, C.A.; Putt, J.C. Advanced pneumatic impulse ice protection system (PIIP) for aircraft. J. Aircr. 1992, 29, 714–716. [Google Scholar] [CrossRef]
- Palacios, J.L.; Smith, E.C.; Gao, H. Ultrasonic shear wave anti-Icing system for helicopter rotor blades. In Proceedings of the American Helicopter Society 62nd Annual Forum, Phoenix, AZ, USA, 9–11 May 2006. [Google Scholar]
- Kulinich, S.A.; Farzaneh, M. Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 2009, 255, 8153–8157. [Google Scholar] [CrossRef]
- Habibi, H.; Cheng, L.; Zheng, H. A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations. Renew. Energy 2015, 83, 859–870. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Palacios, J.; Rose, J. De-icing of multi-layer composite plates using ultrasonic guided waves. In Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Schaumburg, IL, USA, 7–10 April 2008. [Google Scholar]
- Palacios, J.; Smith, E.; Rose, J. Ultrasonic de-icing of wind-tunnel impact icing. J. Aircr. 2011, 48, 1020–1027. [Google Scholar] [CrossRef]
- Palacios, J.; Smith, E.; Rose, J. Instantaneous de-icing of freezer ice via ultrasonic actuation. AIAA J. 2011, 49, 1158–1167. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Song, B. Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades. Renew. Energy 2017, 113, 706–712. [Google Scholar] [CrossRef]
- Tan, H.; Xu, G.; Tao, T. Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting. Appl. Therm. Eng. 2016, 107, 479–492. [Google Scholar] [CrossRef]
- Guo, W.F.; Li, Y.; Wang, S.L. Experimental researches on anti-icing of plate in icing wind tunnel condition based on ultrasonic vibration. China Sci. Pap. 2017, 12, 560–563. (In Chinese) [Google Scholar]
- Chu, M.C.; Scavuzzo, R.J. Adhesive shear strength of impact ice. AIAA J. 1991, 29, 1921–1926. [Google Scholar] [CrossRef]
- Jellinek, H. Adhesive properties of ice. J. Colloid Sci. 1959, 14, 268–280. [Google Scholar] [CrossRef]
- Scavuzzo, R.J.; Chu, M.L.; Kellackey, C.J. Impact ice stresses in rotating airfoils. J. Aircr. 2015, 28, 450–455. [Google Scholar] [CrossRef]
- Wu, G. Aluminum alloy material property. In Aluminum and Aluminum Alloy Material Handbook, 1st ed.; Wu, G., Yao, L.J., Eds.; Science Press: Beijing, China, 1994; Volume 1, pp. 118–268. [Google Scholar]
- Guo, Y.K.; Meng, W.Y. Experimental Investigations on Mechanical Properties of Ice. J. North China Univ. Water Resour. Electr. Power Nat. Sci. Ed. 2015, 36, 40–43. (In Chinese) [Google Scholar]
- Luan, G.D. Piezoelectric material. In Piezoelectric Transducers and Arrays, 1st ed.; Luan, G.D., Zhang, J.D., Eds.; Peking University Press: Beijing, China, 2005; Volume 1, pp. 93–95. [Google Scholar]
Material | Item | Value |
---|---|---|
Aluminum alloy | Density | 2.7 × 103 kg/m3 |
Elastic modulus | 7 × 1010 Pa | |
Poisson ratio | 0.3 | |
Ice | Density | 0.9 × 103 kg/m3 |
Elastic modulus | 0.6 × 109 Pa | |
Poisson ratio | 0.35 | |
Piezoelectric ceramic | Density | 7.5 × 103 kg/m3 |
Side Length of PZT Patch/mm | Excitation Frequency/kHz | Maximum Shear Stress/Pa |
---|---|---|
16 | 59 | 2.76 × 106 |
16 | 87 | 8.69 × 106 |
14 | 79 | 7.83 × 106 |
Thickness of Ice (mm) | Thickness of the PZT Patch (mm) | Experimental Temperature (°C) | Excitation Voltage Vp-p (V) | Side Length of PZT Patch (mm) | Excitation Frequency (kHz) |
---|---|---|---|---|---|
2 | 2 | −18 | 400 | 16 | 0 |
85 | |||||
87 | |||||
89 | |||||
14 | 0 | ||||
77 | |||||
79 | |||||
81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Shen, H.; Guo, W. Effect of Ultrasonic Vibration on the Surface Adhesive Characteristic of Iced Aluminum Alloy Plate. Appl. Sci. 2022, 12, 2357. https://doi.org/10.3390/app12052357
Li Y, Shen H, Guo W. Effect of Ultrasonic Vibration on the Surface Adhesive Characteristic of Iced Aluminum Alloy Plate. Applied Sciences. 2022; 12(5):2357. https://doi.org/10.3390/app12052357
Chicago/Turabian StyleLi, Yan, He Shen, and Wenfeng Guo. 2022. "Effect of Ultrasonic Vibration on the Surface Adhesive Characteristic of Iced Aluminum Alloy Plate" Applied Sciences 12, no. 5: 2357. https://doi.org/10.3390/app12052357
APA StyleLi, Y., Shen, H., & Guo, W. (2022). Effect of Ultrasonic Vibration on the Surface Adhesive Characteristic of Iced Aluminum Alloy Plate. Applied Sciences, 12(5), 2357. https://doi.org/10.3390/app12052357