Quartz-Enhanced Photoacoustic and Photothermal Spectroscopy
1. Introduction
2. Main Content of the Special Issue
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Patimisco, P.; Sampaolo, A.; Dong, L.; Tittel, F.K.; Spagnolo, V. Recent advances in quartz enhanced photoacoustic sensing. Phys. Rev. Lett. 2018, 5, 011106. [Google Scholar] [CrossRef]
- Wu, H.; Dong, L.; Zheng, H.; Yu, Y.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nat. Commun. 2017, 8, 15331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Kosterev, A.A.; Thomazy, D.; Tittel, F.K. QEPAS spectrophones: Design, optimization, and performance. Appl. Phys. B 2010, 100, 627–635. [Google Scholar] [CrossRef]
- Giglio, M.; Zifarelli, A.; Sampaolo, A.; Menduni, G.; Elefante, A.; Blanchard, R.; Pfluegl, C.; Witinski, M.F.; Vakhshoori, D.; Wu, H.; et al. Broadband detection of methane and nitrous oxide using a distributed-feedback quantum cascade laser array and quartz-enhanced photoacoustic sensing. Photoacoustics 2020, 17, 100159. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.D.; Zifarelli, A.; Patimisco, P.; Sampaolo, A.; Wei, T.; Wu, H.; Dong, L.; Spagnolo, V. Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy. Opt. Express 2020, 28, 19074–19084. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, Y.; Patimisco, P.; Sampaolo, A.; Qiao, S.; Yu, X.; Tittel, F.K.; Spagnolo, V. Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork. Appl. Phys. Lett. 2020, 116, 011103. [Google Scholar] [CrossRef]
- Sampaolo, A.; Menduni, G.; Patimisco, P.; Giglio, M.; Passaro, V.M.; Dong, L.; Wu, H.; Tittel, F.K.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy for hydrocarbon trace gas detection and petroleum exploration. Fuel 2020, 277, 118118. [Google Scholar] [CrossRef]
- Wu, H.; Dong, L.; Yin, X.; Sampaolo, A.; Patimisco, P.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Spagnolo, V.; et al. Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration. Sens. Actuators Chem. 2019, 297, 126753. [Google Scholar] [CrossRef]
- Li, S.; Sun, B.; Shang, Z.; Li, B.; Cui, R.; Wu, H.; Dong, L. Quartz Enhanced Conductance Spectroscopy for polymer nano-mechanical thermal analysis. Appl. Sci. 2020, 10, 4954. [Google Scholar] [CrossRef]
- Zheng, H.; Lin, H.; Dong, L.; Huang, Z.; Gu, X.; Tang, J.; Dong, L.; Zhu, W.; Yu, J.; Chen, Z. Quartz-enhanced photo-thermal-acoustic spectroscopy for trace gas analysis. Appl. Sci. 2019, 9, 4021. [Google Scholar] [CrossRef] [Green Version]
- Lan, G.; Jin, Z.; Nong, J.; Luo, P.; Guo, C.; Sang, Z.; Dong, L.; Wei, W. Narrowband perfect absorber based on dielectric-metal meta-surface for surface-enhanced infrared sensing. Appl. Sci. 2020, 10, 2295. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, P.Z.; Starecki, T.; Tittel, F.K. Improving Signal to Noise Ratio of QTF Preamplifiers Dedicated for QEPAS Applications. Appl. Sci. 2020, 10, 4105. [Google Scholar] [CrossRef]
- Menduni, G.; Sampaolo, A.; Patimisco, P.; Giglio, M.; Russo, S.D.; Zifarelli, A.; Elefante, A.; Wieczorek, P.Z.; Starecki, T.; Passaro, V.M.N.; et al. Front-end amplifiers for Tuning Forks in Quartz Enhanced PhotoAcoustic Spectroscopy. Appl. Sci. 2020, 10, 2947. [Google Scholar] [CrossRef]
- Hayden, J.; Baumgartner, B.; Lendl, B. Anomalous Humidity Dependence in Photoacoustic Spectroscopy of CO Explained by Kinetic Cooling. Appl. Sci. 2020, 10, 843. [Google Scholar] [CrossRef] [Green Version]
- Mordmueller, M.; Edelmann, S.; Knestel, M.; Schade, W.; Willer, U. Phase Optimized Photoacoustic Sensing of Gas Mixtures. Appl. Sci. 2020, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Sgobba, F.; Menduni, G.; Russo1, S.D.; Sampaolo, A.; Patimisco, P.; Giglio, M.; Ranieri, E.; Passaro, V.M.N.; Tittel, F.K.; Spagnolo, V. Quartz-enhanced Photoacoustic Detection of Ethane in the Near-IR Exploiting a Highly Performant Spectrophone. Appl. Sci. 2020, 10, 2447. [Google Scholar] [CrossRef] [Green Version]
- Shang, Z.; Li, S.; Wu, H.; Dong, L. Quartz enhanced photoacoustic detection based on an elliptical laser beam. Appl. Sci. 2020, 10, 1197. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Gao, Y.; Yang, L.; Yan, Y.; Li, J.; Ren, J.; Russo, S.D.; Zifarelli, A.; Patimisco, P.; Wu, H.; et al. Near-infrared quartz-enhanced photoacoustic sensor for H2S detection in biogas. Appl. Sci. 2019, 9, 5347. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Sampaolo, A. Quartz-Enhanced Photoacoustic and Photothermal Spectroscopy. Appl. Sci. 2022, 12, 2613. https://doi.org/10.3390/app12052613
Wu H, Sampaolo A. Quartz-Enhanced Photoacoustic and Photothermal Spectroscopy. Applied Sciences. 2022; 12(5):2613. https://doi.org/10.3390/app12052613
Chicago/Turabian StyleWu, Hongpeng, and Angelo Sampaolo. 2022. "Quartz-Enhanced Photoacoustic and Photothermal Spectroscopy" Applied Sciences 12, no. 5: 2613. https://doi.org/10.3390/app12052613
APA StyleWu, H., & Sampaolo, A. (2022). Quartz-Enhanced Photoacoustic and Photothermal Spectroscopy. Applied Sciences, 12(5), 2613. https://doi.org/10.3390/app12052613