Towards Intricate Stand Structure: A Novel Individual Tree Segmentation Method for ALS Point Cloud Based on Extreme Offset Deep Learning
Abstract
:1. Introduction
- Extreme offset deep learning method. Aiming at the problem of incomplete artificial feature extraction ability in traditional ITS segmentation algorithm, an extreme offset deep learning method is proposed. The forest point cloud features are automatically extracted through the extreme offset deep network, and the points are offset to the vicinity of the corresponding extreme points to enhance the discrimination among neighboring individual trees.
- Dynamic bandwidth. Aiming at the problem that the mean shift algorithm cannot adaptively determine bandwidth in a spatial transformed offset point cloud, a dynamic bandwidth calculation strategy based on average nearest neighbor distance is designed. This strategy can automatically determine the bandwidth of the mean shift algorithm without any prior knowledge, which enhances the universality of the mean shift algorithm.
- ITS set aggregation. Aiming at the over-segmentation problem caused by the randomness of the deep network, considering the characteristics that the canopy gradient changes sharply among different trees and gently within the same tree, the ITS set aggregation based on gradient change is designed to improve the segmentation accuracy in complex woodlands.
2. Methods
- (1)
- Preprocessing. Data preprocessing included point cloud filtering, elevation normalization, dividing sub-plot (25 m × 25 m), point cloud denoising, down-sampling, and coordinate normalization.
- (2)
- Extreme offset. The extreme offset deep learning method is used to perform a spatial transformation on the preprocessed point cloud, and each point is offset to the corresponding treetop to enhance the discrimination among different trees.
- (3)
- Mean shift. In view of the large density of treetops in the offset point cloud, the self-adaptive mean shift algorithm based on average neighboring distance is adopted to cluster the offset point cloud, divide the offset point cloud set, and complete the labeling.
- (4)
- Space mapping. The offset point cloud, after clustering and labeling, is mapped back to the original point cloud space to complete the preliminary segmentation.
- (5)
- ITS set aggregation. Considering the characteristics that the gradient change among different tree canopies is sharp, while the same tree canopy is gentle, the adjacent canopies with gentle gradient change are aggregated to reduce the over-segmentation error.
- (6)
- Postprocessing. The segmentation is completed after up-sampling and coordinate de-normalization. The flowchart of the proposed method is shown in Figure 1.
2.1. Data Preprocessing
2.2. Point Transformer with Extreme Loss Function
2.3. Mean Shift Algorithm with Dynamic Bandwidth
2.4. ITS Set Aggregation Based on Gradient Change
3. Experimental Data and Evaluation Methods
3.1. ALS Point Cloud in Germany and USA
3.2. Dataset
3.3. Assessment Criteria
4. Results
4.1. Validity Experiment
4.2. Ablation Experiment
- (1)
- Extreme offset
- (2)
- Dynamic bandwidth
- (3)
- ITS set aggregation
5. Discussion
5.1. Comparison with Existing Methods
5.2. Analysis of Extreme Offset, Dynamic Bandwidth Strategy, and ITS Set Aggregation
5.3. Potential Improvements
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, H.; Shu, Q.; Xi, L.; Huang, J.; Liu, Y.; Yang, Q. Research Progress of Lidar in Forest Biomass Estimation. Green Sci. Technol. 2022, 24, 23–28. [Google Scholar]
- Pu, Y.; Xu, D.; Wang, H.; Li, X.; Xu, X. A New Strategy for Individual Tree Detection and Segmentation from Leaf-on and Leaf-off UAV-LiDAR Point Clouds Based on Automatic Detection of Seed Points. Remote Sens. 2023, 15, 1619. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, H.; Xia, W.; Huang, Q.; Chen, Z.; Wang, D. Exploration of Individual Tree Segmentation Method in Subtropical Coniferous Forest Using Airborne Radar Data. Appl. Laser 2021, 41, 1301–1309. [Google Scholar]
- Xu, D.; Wang, H.; Xu, W.; Luan, Z.; Xu, X. LiDAR applications to estimate forest biomass at individual tree scale: Opportunities, challenges and future perspectives. Forests 2021, 12, 550. [Google Scholar] [CrossRef]
- Kong, M. Single Tree Extraction of Airborne Forest Point Cloud Based on Deep Learning of Candidate Regions; China University of Geosciences: Beijing, China, 2021. [Google Scholar]
- Hui, Z.; Jin, S.; Li, D.; Ziggah, Y.Y.; Liu, B. Individual Tree Extraction from Terrestrial LiDAR Point Clouds Based on Transfer Learning and Gaussian Mixture Model Separation. Remote Sens. 2021, 13, 223. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Luo, Z. Combining trunk detection with canopy segmentation to delineate single deciduous trees using airborne LiDAR data. IEEE Access 2020, 8, 99783–99796. [Google Scholar] [CrossRef]
- Huo, L.; Lindberg, E.; Holmgren, J. Towards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD). Remote Sens. Environ. 2022, 270, 112857. [Google Scholar] [CrossRef]
- Huiling, L.; Xiaoli, Z.; Ying, Z.; Yunfeng, Z.; Hui, L.; Longyang, W. Review on Individual Tree Detection Based on Airborne LiDAR. Laser Optoelectron. Prog. 2018, 8, 82805. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, X.; Hang, M.; Li, J. Research on the improvement of single tree segmentation algorithm based on airborne LiDAR point cloud. Open Geosci. 2021, 13, 705–716. [Google Scholar] [CrossRef]
- Fu, H.; Li, H.; Dong, Y.; Xu, F.; Chen, F. Segmenting Individual Tree from TLS Point Clouds Using Improved DBSCAN. Forests 2022, 13, 566. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A new method for segmenting individual trees from the lidar point cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Li, J.; Jing, L.; Judah, A. Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 145–155. [Google Scholar] [CrossRef]
- Hamraz, H.; Contreras, M.A.; Zhang, J. A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Yun, T.; Jiang, K.; Li, G.; Eichhorn, M.P.; Fan, J.; Liu, F.; Chen, B.; An, F.; Cao, L. Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach. Remote Sens. Environ. 2021, 256, 112307. [Google Scholar] [CrossRef]
- Yan, W.; Guan, H.; Cao, L.; Yu, Y.; Li, C.; Lu, J. A self-adaptive mean shift tree-segmentation method using UAV LiDAR data. Remote Sens. 2020, 12, 515. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Luo, D.; Hua, K.; Lu, H.; Zhang, X. Overview on deep learning. CAAI Trans. Intell. Syst. 2019, 14, 1–19. [Google Scholar]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sens. 2019, 11, 1309. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Jiang, K.; Zhu, Y.; Wang, X.; Yun, T. Individual tree crown segmentation directly from UAV-borne LiDAR data using the PointNet of deep learning. Forests 2021, 12, 131. [Google Scholar] [CrossRef]
- Wang, F.; Bryson, M. Tree Segmentation and Parameter Measurement from Point Clouds Using Deep and Handcrafted Features. Remote Sens. 2023, 15, 1086. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Qi, C.R.; Litany, O.; He, K.; Guibas, L.J. Deep hough voting for 3d object detection in point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision 2019, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9277–9286. [Google Scholar]
- Jiang, L.; Zhao, H.; Shi, S.; Liu, S.; Fu, C.W.; Jia, J. Pointgroup: Dual-set point grouping for 3d instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and PATTERN Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4867–4876. [Google Scholar]
- Chen, S.; Fang, J.; Zhang, Q.; Liu, W.; Wang, X. Hierarchical aggregation for 3d instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 15467–15476. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. arXiv 2017. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 16259–16268. [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Chen, W.; Hu, X.; Chen, W.; Hong, Y.; Yang, M. Airborne LiDAR Remote Sensing for Individual Tree Forest Inventory Using Trunk Detection-Aided Mean Shift Clustering Techniques. Remote Sens. 2018, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Weiser, H.; Schäfer, J.; Winiwarter, L.; Krašovec, N.; Fassnacht, F.E.; Höfle, B. Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests. Earth Syst. Sci. Data 2022, 14, 2989–3012. [Google Scholar] [CrossRef]
- Zhao, K.; Suarez, J.C.; Garcia, M.; Hu, T.; Wang, C.; Londo, A. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sens. Environ. 2018, 204, 883–897. [Google Scholar] [CrossRef]
Plot IDs | Number of Individual Trees | RCD (%) | Number of Sub-Plots |
---|---|---|---|
U1 | 132 | 61.58 | 16 |
U2 | 186 | 69.09 | 16 |
G1 | 108 | 93.25 | 12 |
G2 | 261 | 96.40 | 16 |
Plot | TN 1 | MT 2 | OE 3 | CE 4 | p | r | F |
---|---|---|---|---|---|---|---|
U1 | 132 | 110 | 9 | 15 | 0.88000 | 0.92437 | 0.90164 |
U2 | 186 | 158 | 13 | 15 | 0.91329 | 0.92398 | 0.91860 |
G1 | 108 | 87 | 16 | 5 | 0.94565 | 0.87931 | 0.90667 |
G2 | 261 | 203 | 46 | 13 | 0.93981 | 0.81526 | 0.87312 |
Overall | 687 | 558 | 84 | 48 | 0.91968 | 0.88573 | 0.90000 |
Extreme Offset | Dynamic Bandwidth | ITS Set Aggregation | p | r | F |
---|---|---|---|---|---|
0.54379 | 0.38114 | 0.43816 | |||
√ | 0.79675 | 0.72826 | 0.75743 | ||
√ | √ | 0.87075 | 0.85266 | 0.85876 | |
√ | √ | 0.91801 | 0.76391 | 0.83285 | |
√ | √ | √ | 0.91968 | 0.88573 | 0.90000 |
Method | Plots | RCD | TN 1 | MT 2 | OE 3 | CE 4 | p | r | F |
---|---|---|---|---|---|---|---|---|---|
Center offset | U1 | 61.58% | 132 | 51 | 52 | 28 | 0.64557 | 0.49515 | 0.56044 |
U2 | 69.09% | 186 | 57 | 75 | 91 | 0.38514 | 0.43182 | 0.40714 | |
G1 | 93.25% | 108 | 26 | 56 | 18 | 0.59091 | 0.31707 | 0.41270 | |
G2 | 96.40% | 261 | 62 | 159 | 50 | 0.55357 | 0.28054 | 0.37237 | |
Overall | 687 | 196 | 342 | 187 | 0.54379 | 0.38114 | 0.43816 | ||
Extreme offset | U1 | 61.58% | 132 | 86 | 19 | 27 | 0.76106 | 0.81905 | 0.78899 |
U2 | 69.09% | 186 | 112 | 58 | 16 | 0.87500 | 0.65882 | 0.75168 | |
G1 | 93.25% | 108 | 63 | 18 | 17 | 0.78750 | 0.77778 | 0.78261 | |
G2 | 96.40% | 261 | 142 | 74 | 44 | 0.76344 | 0.65741 | 0.70647 | |
Overall | 687 | 403 | 169 | 104 | 0.79675 | 0.72826 | 0.75743 |
Bandwidth | Plots | RCD | TN 1 | MT 2 | OE 3 | CE 4 | p | r | F |
---|---|---|---|---|---|---|---|---|---|
Fixed bandwidth | U1 | 61.58% | 132 | 86 | 19 | 27 | 0.76106 | 0.81905 | 0.78899 |
U2 | 69.09% | 186 | 112 | 58 | 16 | 0.87500 | 0.65882 | 0.75168 | |
G1 | 93.25% | 108 | 63 | 18 | 17 | 0.78750 | 0.77778 | 0.78261 | |
G2 | 96.40% | 261 | 142 | 74 | 44 | 0.76344 | 0.65741 | 0.70647 | |
Overall | 687 | 403 | 169 | 104 | 0.79675 | 0.72826 | 0.75743 | ||
Dynamic bandwidth | U1 | 61.58% | 132 | 103 | 9 | 27 | 0.79231 | 0.91964 | 0.85124 |
U2 | 69.09% | 186 | 153 | 18 | 16 | 0.90533 | 0.89474 | 0.90000 | |
G1 | 93.25% | 108 | 70 | 15 | 11 | 0.86420 | 0.82353 | 0.84337 | |
G2 | 96.40% | 261 | 187 | 55 | 16 | 0.92118 | 0.77273 | 0.84045 | |
Overall | 687 | 513 | 97 | 70 | 0.87075 | 0.85266 | 0.85876 |
Method | Plots | RCD | TN 1 | MT 2 | OE 3 | CE 4 | p | r | F |
---|---|---|---|---|---|---|---|---|---|
HAIS set aggregation | U1 | 61.58% | 132 | 86 | 19 | 27 | 0.76106 | 0.81905 | 0.78899 |
U2 | 69.09% | 186 | 112 | 58 | 16 | 0.87500 | 0.65882 | 0.75168 | |
G1 | 93.25% | 108 | 63 | 18 | 17 | 0.78750 | 0.77778 | 0.78261 | |
G2 | 96.40% | 261 | 142 | 74 | 44 | 0.76344 | 0.65741 | 0.70647 | |
Overall | 687 | 403 | 169 | 104 | 0.79675 | 0.72826 | 0.75743 | ||
ITS set aggregation | U1 | 61.58% | 132 | 100 | 20 | 12 | 0.89286 | 0.83333 | 0.86207 |
U2 | 69.09% | 186 | 133 | 47 | 6 | 0.95683 | 0.73889 | 0.83386 | |
G1 | 93.25% | 108 | 65 | 24 | 7 | 0.90278 | 0.73034 | 0.80745 | |
G2 | 96.40% | 261 | 183 | 60 | 16 | 0.91960 | 0.75309 | 0.82805 | |
Overall | 687 | 481 | 151 | 41 | 0.91801 | 0.76391 | 0.83285 |
Method | Plots | RCD | TN 1 | MT 2 | OE 3 | CE 4 | p | r | F | Time(Min) 5 |
---|---|---|---|---|---|---|---|---|---|---|
SHDR method | U1 | 61.58% | 132 | 91 | 25 | 12 | 0.88350 | 0.78448 | 0.83105 | 4.5 |
U2 | 69.09% | 186 | 141 | 22 | 26 | 0.84431 | 0.86503 | 0.85455 | 4.7 | |
G1 | 93.25% | 108 | 94 | 13 | 18 | 0.83929 | 0.87850 | 0.85845 | 6.6 | |
G2 | 96.40% | 261 | 194 | 27 | 42 | 0.82203 | 0.87783 | 0.84902 | 7.5 | |
Overall | 687 | 520 | 87 | 98 | 0.84728 | 0.85146 | 0.84826 | 23.3 | ||
DK method | U1 | 61.58% | 132 | 56 | 40 | 38 | 0.59574 | 0.58333 | 0.58947 | 1.9 |
U2 | 69.09% | 186 | 74 | 48 | 82 | 0.47436 | 0.60656 | 0.53237 | 2.2 | |
G1 | 93.25% | 108 | 61 | 35 | 18 | 0.77215 | 0.63542 | 0.69714 | 3.9 | |
G2 | 96.40% | 261 | 67 | 52 | 13 | 0.83750 | 0.56303 | 0.67337 | 4.5 | |
Overall | 687 | 258 | 175 | 151 | 0.66993 | 0.59708 | 0.62308 | 12.5 | ||
Improved DK method | U1 | 61.58% | 132 | 102 | 7 | 16 | 0.86441 | 0.93578 | 0.89868 | 2.7 |
U2 | 69.09% | 186 | 140 | 19 | 22 | 0.86420 | 0.88050 | 0.87227 | 2.6 | |
G1 | 93.25% | 108 | 76 | 14 | 23 | 0.76768 | 0.84444 | 0.80423 | 4.1 | |
G2 | 96.40% | 261 | 184 | 42 | 34 | 0.84404 | 0.81416 | 0.82883 | 5.5 | |
Overall | 687 | 502 | 82 | 95 | 0.83508 | 0.86872 | 0.85084 | 14.9 | ||
HAIS method | U1 | 61.58% | 132 | 86 | 19 | 27 | 0.76106 | 0.81905 | 0.78899 | 2.2 |
U2 | 69.09% | 186 | 112 | 58 | 16 | 0.87500 | 0.65882 | 0.75168 | 2.6 | |
G1 | 93.25% | 108 | 63 | 18 | 17 | 0.78750 | 0.77778 | 0.78261 | 4.1 | |
G2 | 96.40% | 261 | 142 | 74 | 44 | 0.76344 | 0.65741 | 0.70647 | 4.8 | |
Overall | 687 | 403 | 169 | 104 | 0.79675 | 0.72826 | 0.75743 | 13.7 | ||
The proposed method | U1 | 61.58% | 132 | 110 | 9 | 15 | 0.88000 | 0.92437 | 0.90164 | 2.1 |
U2 | 69.09% | 186 | 158 | 13 | 15 | 0.91329 | 0.92398 | 0.91860 | 2.5 | |
G1 | 93.25% | 108 | 87 | 16 | 5 | 0.94565 | 0.87931 | 0.90667 | 4.0 | |
G2 | 96.40% | 261 | 203 | 46 | 13 | 0.93981 | 0.81526 | 0.87312 | 4.9 | |
Overall | 687 | 558 | 84 | 48 | 0.91968 | 0.88573 | 0.90000 | 13.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, H.; Liu, X.; Yu, H. Towards Intricate Stand Structure: A Novel Individual Tree Segmentation Method for ALS Point Cloud Based on Extreme Offset Deep Learning. Appl. Sci. 2023, 13, 6853. https://doi.org/10.3390/app13116853
Zhang Y, Liu H, Liu X, Yu H. Towards Intricate Stand Structure: A Novel Individual Tree Segmentation Method for ALS Point Cloud Based on Extreme Offset Deep Learning. Applied Sciences. 2023; 13(11):6853. https://doi.org/10.3390/app13116853
Chicago/Turabian StyleZhang, Yizhuo, Hantao Liu, Xingyu Liu, and Huiling Yu. 2023. "Towards Intricate Stand Structure: A Novel Individual Tree Segmentation Method for ALS Point Cloud Based on Extreme Offset Deep Learning" Applied Sciences 13, no. 11: 6853. https://doi.org/10.3390/app13116853
APA StyleZhang, Y., Liu, H., Liu, X., & Yu, H. (2023). Towards Intricate Stand Structure: A Novel Individual Tree Segmentation Method for ALS Point Cloud Based on Extreme Offset Deep Learning. Applied Sciences, 13(11), 6853. https://doi.org/10.3390/app13116853