The Effect of Resveratrol and Static Magnetic Field Interactions on the Oxidation–Reduction Parameters of Melanoma Malignant Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cell Culture Conditions
2.3. Resveratrol Cytotoxicity
2.4. Exposure of the Melanoma Cells to Resveratrol and an SMF
2.5. Preparing the Cell Lysates
2.6. Biochemical Determinations
2.6.1. Assay of the Activity of the Antioxidant Enzymes
2.6.2. Total Antioxidant Status (ABTS) Assay
2.6.3. Lipid Peroxidation Assay
2.6.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demirci-Çekiça, S.; Özkanb, G.; Neslihan Avana, A.; Uzunboya, S.; Çapanoğlub, E.; Apaka, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2020, 209, 114477. [Google Scholar] [CrossRef] [PubMed]
- Poklar-Urlih, N.; Opara, R.; Skrt, M.; Kosmer, T.; Wondra, M.; Abram, W. Part I. Polyphenols composition and antioxidant potential during ‘Blaufränkisch’ grape maceration and red wine maturation and the effects of trans-resveratrol addition. Food Chem. Toxicol. 2020, 137, 111122. [Google Scholar] [CrossRef]
- Ndiaye, M.; Philippe, C.; Mukhtar, H.; Ahmad, N. The grape antioxidant resveratrol for skin disorders: Promise, prospects and challenges. Arch. Biochem. Biophys. 2011, 508, 164–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat. Res. 2008, 658, 68–94. [Google Scholar] [CrossRef]
- Sterybo, U.; Vang, O.; Bonnesen, C. A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chem. 2007, 102, 449–457. [Google Scholar] [CrossRef]
- Guler, A. Effects of different maceration techniques on the colour, polyphenols and antioxidant capacity of grape juice. Food Chem. 2020, 404, 134603. [Google Scholar] [CrossRef] [PubMed]
- Callanghan, C.M.; Legget, R.E.; Levin, R.M. A comparison of total antioxidant capacities of concord, purple, red and green grapes using the CUPRAC assay. Antioxidants 2013, 2, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Mikuła-Pietrasik, J.; Kuczmarska, A.; Książek, K. Biological multifunctionality of resveratrol and its derivatives. Adv. Biochem. 2015, 61, 336–343. [Google Scholar]
- Catagol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012, 3, 141. [Google Scholar]
- Svajger, U.; Jeras, M. Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. Int. Rev. Immunol. 2012, 31, 202–222. [Google Scholar] [CrossRef]
- Mikuła-Pietrasik, J.; Kuczmarska, A.; Kucińska, M.; Murias, M.; Wierzchowski, M.; Winckiewicz, M.; Staniszewski, R.; Breborowicz, A.; Książek, K. Resveratrol and its synthetic derivatives exert opposite effects on mesothelial cell-dependent angiogenesis via modulating secretion of VEGF and IL-8/CXCL8. Angiogenesis 2012, 15, 361–376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Yuan, X.; Lv, H.; Che, J.; Wang, S.; Shang, P. Biophysical mechanisms underlying the effects of static magnetic fields on biological systems. Prog. Biophys. Mol. Biol. 2022, 177, 14–23. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, M.; Lou, C.; Chen, S.; Guo, H.; Gao, Y.; Lv, H.; Yuan, X.; Zhang, X.; Shang, P. Evaluating the biological safety on mice at 16 T static magnetic field with 700 MHz radio-frequency electromagnetic field. Ecotoxicol. Environ. Saf. 2022, 230, 113125. [Google Scholar] [CrossRef] [PubMed]
- Glinka, M.; Gawron, S.; Sieroń, A.; Pawłowska-Góral, K.; Cieślar, G.; Sieroń-Stołtny, K. Test chambers for cell culture in static magnetic field. J. Magn. Magn. Mater. 2013, 331, 208–215. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Iacopinia, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal. 2008, 21, 589–598. [Google Scholar] [CrossRef]
- Robertson, I.; Hau, T.W.; Samic, F.; Ali, S.; Badgujar, V.; Murtuja, S.; Hasnain, S.; Khan, A.; Majeed, S.; Ansari, M.T. The science of resveratrol, formulation, pharmacokinetic barriers and its chemotherapeutic potential. Int. J. Pharm. 2022, 618, 121605. [Google Scholar] [CrossRef]
- Amorntaveechai, A.; Osathanon, T.; Pavasant, P.; Sooampon, S. Effect of resveratrol and oxyresveratrol on deferoxamine-induced cancer stem cell marker expression in human head and neck squamous cell carcinoma. J. Oral Biol. Craniofacial Res. 2022, 12, 253–257. [Google Scholar] [CrossRef]
- Venkatadri, R.; Iyer, A.K.; Kaushik, V.; Azad, N. A novel resveratrol–salinomycin combination sensitizes ER-positive breast cancer cells to apoptosis. Pharmacol. Rep. 2017, 69, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Sujin, K.; Wonki, K.; Do-Hee, K.; Jeong-Hoon, J.; Su-Jung, K.; Sin-Aye, P.; Hyunggu, H.; Byung-Woo, H.; Hye-Kyung, N.; Kyung-Soo, C.; et al. Resveratrol suppresses gastric cancer cell proliferation and survival through inhibition of PIM-1 kinase activity. Arch. Biochem. Biophys. 2020, 689, 108413. [Google Scholar]
- Athar, M.; Back, J.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms. Arch. Biochem. Biophys. 2009, 486, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgieva, J.; Sinha, P.; Schadendorf, D. Expression of cyclins and cyclin dependent kinases in human benign and malignant melanocytic lesions. J. Clin. Pathol. 2001, 54, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Gulcin, I. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutteridge, J.; Halliwell, B. Mini-Review: Oxidative stress, redox stress or redox success? Biochem. Biophys. Res. Commun. 2018, 502, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.R.; Kim, S.M.; Hwang, K.A.; Kang, J.H.; Choi, K.C. Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis and cell cycle arrest in the A375SM malignant melanoma cell line. Int. J. Mol. Med. 2018, 42, 1427–1435. [Google Scholar] [CrossRef] [Green Version]
- Lei, M.; Dong, Y.; Sun, C.H.; Zhang, X.H. Resveratrol inhibits proliferation, promotes differentiation and melanogenesis in HT-144 melanoma cells through inhibition of MEK/ERK kinase pathway. Microb. Pathog. 2017, 111, 410–413. [Google Scholar] [CrossRef]
- Nivelle, L.; Aires, V.; Rioult, D.; Martiny, L.; Tarpin, M.; Delmas, D. Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cells. Food Chem. Toxicol. 2018, 116, 323–334. [Google Scholar] [CrossRef]
- Kil, J.S.; Son, Y.; Yong-Kwan, C.; Nam-Ho, K.; Hee, J.J.; Don, S.; Hun-Tae, C.; Hyun-Ock, P. An anticancer/cytotoxic activity of resveratrol is not hampered by its ability to induce the expression of the antioxidant/cytoprotective heme oxygenase-1 in RAW264.7 cells. Biomed. Prev. Nutr. 2011, 1, 146–152. [Google Scholar]
- Zhang, Z.; Ji, Y.; Hu, N.; Yu, Q.; Zhang, X.; Li, J.; Wu, F.; Xu, H.; Tang, Q.; Li, X. Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asian J. Pharm. Sci. 2022, 17, 751–766. [Google Scholar] [CrossRef]
- Huang, S.; Cao, B.; Zhang, J.; Feng, Y.; Wang, L.; Chen, X.; Hang, S.; Shengrong, L.; Jinggong, L.; Jun, Y.; et al. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: Molecular mechanism and therapeutic potential. Cell Death Dis. 2021, 12, 237. [Google Scholar] [CrossRef]
- Latunde-Dada, G.O. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1893–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Green, M.; Choi, J.E.; Gijon, M.; Kennedy, P.D.; Johnson, J.K.; Liao, P.; Lang, X.; Kryczek, I.; Sell, A.; et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019, 569, 70–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, X.; Liu, J.; Yan, L.; Zhiyutan, L.; Xinmiao, L.; Wenchao, W.; Zhang, X. 1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE-2Z cells. Sci. Bull. 2015, 60, 2120–2180. [Google Scholar] [CrossRef] [Green Version]
- Sabo, J.; Mirossay, L.; Horovcak, L.; Sarissky, M.; Mirossay, A.; Mojzis, J. Effects of static magnetic field on human leukemic cell line HL-60. Bioelectrochemistry 2002, 15, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Synowiec-Wojtarowicz, A.; Pawłowska-Góral, K.; Krawczyk, A.; Gawron, S.; Kimsa-Dudek, M. The effect of a static magnetic field and baicalin or baicalein interactions on amelanotic melanoma cell cultures (C32). Mol. Biol. Rep. 2022, 49, 3157–31636. [Google Scholar] [CrossRef]
- Kotani, H.; Iwasaka, M.; Ueno, S. Magnetic orientation of collagen and bone mixture. J. Appl. Phys. 2000, 87, 6191–6193. [Google Scholar] [CrossRef]
- Panczyk, T.; Camp, P. Lorentz forces induced by static magnetic field have negligible effects on results from classical molecular dynamics simulations of aqueous solutions. J. Mol. Liq. 2021, 330, 115701. [Google Scholar] [CrossRef]
- LV, H.; Wang, Y.; Liu, J.; Zhen, C.; Zhang, X.; Liu, Y.; Lou, C.; Guo, H.; Wei, Y. Exposure to a static magnetic field attenuates hepatic damage and function abnormality in obese and diabetic mice. BBA Mol. Basis Dis. 2023, 1869, 166719. [Google Scholar] [CrossRef]
MDA [nmol/106 Cells] | ABTS [nmol/106 Cells] | |||
---|---|---|---|---|
C | 31.65 ± 1.52 | 24.65 ± 1.03 | 411.6 ± 28.1 | 380.3 ± 11.9 |
R [500 μmol/L] | 44.4 ± 2.7 a | 30.02 ± 1.08 a | 565.3 ± 33.2 a | 506.7 ± 33.1 a |
SMF (0.7 T) | 29.01 ± 0.9 b | 25.26 ± 1.7 b | 420.2 ± 21.4 b | 379.9 ± 27.5 b |
SMF (0.7 T) + R [500 μmol/L] | 33.69 ± 1.83 b,c | 27.51 ± 1.3 a,b | 455.9 ± 25.6 b | 370.4 ± 24.2 b |
C32 | Colo829 | C32 | Colo829 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Synowiec-Wojtarowicz, A.; Krawczyk, A.; Kimsa-Dudek, M. The Effect of Resveratrol and Static Magnetic Field Interactions on the Oxidation–Reduction Parameters of Melanoma Malignant Cells. Appl. Sci. 2023, 13, 8042. https://doi.org/10.3390/app13148042
Synowiec-Wojtarowicz A, Krawczyk A, Kimsa-Dudek M. The Effect of Resveratrol and Static Magnetic Field Interactions on the Oxidation–Reduction Parameters of Melanoma Malignant Cells. Applied Sciences. 2023; 13(14):8042. https://doi.org/10.3390/app13148042
Chicago/Turabian StyleSynowiec-Wojtarowicz, Agnieszka, Agata Krawczyk, and Magdalena Kimsa-Dudek. 2023. "The Effect of Resveratrol and Static Magnetic Field Interactions on the Oxidation–Reduction Parameters of Melanoma Malignant Cells" Applied Sciences 13, no. 14: 8042. https://doi.org/10.3390/app13148042
APA StyleSynowiec-Wojtarowicz, A., Krawczyk, A., & Kimsa-Dudek, M. (2023). The Effect of Resveratrol and Static Magnetic Field Interactions on the Oxidation–Reduction Parameters of Melanoma Malignant Cells. Applied Sciences, 13(14), 8042. https://doi.org/10.3390/app13148042